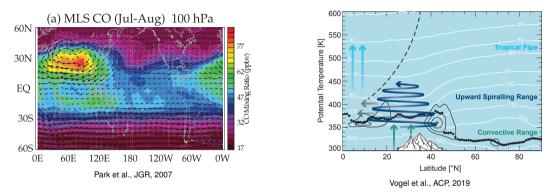


Reconstructing high-resolution in-situ vertical carbon dioxide profiles in the sparsely monitored Asian monsoon region

Bärbel Vogel, C. Michael Volk, Johannes, Wintel, Valentin Lauther, Rolf Müller, Prabir K. Patra, Martin Riese, Yukio Terao, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes Laube, Felix Ploeger and Fred Stroh


Kathmandu in Nepal summer 2017

courtesy of Armin Afchine

Pollutants and greenhouse gases are transported from the surface into the lower stratosphere in the Asian monsoon region

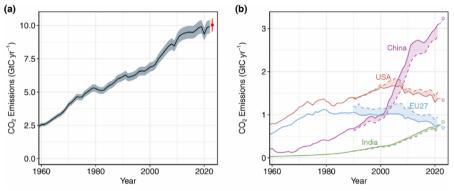
Asian monsoon anticyclone (AMA): Vertical transport

- Pronounced circulation pattern in summer with enhanced substances of tropospheric origin (pollution, aerosol,...)
- convective range: fast uplift up to \approx 360 K (within hours)
- upward spiraling range: slow uplift by diabatic heating superimposed by the anticyclonic flow up to ≈460 K (within a few months)
- the tropical pipe: upward transport into the middle stratosphere by large-scale circulation (within ≈ one year)

Content

Part I

Reconstructing high-resolution in-situ vertical carbon dioxide profiles in the sparsely monitored Asian monsoon region


Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Rolf Müller, Prabir K. Patra, Martin Riese, Yukio Terao and Fred Stroh Communications Earth & Environment, 2023

Part II

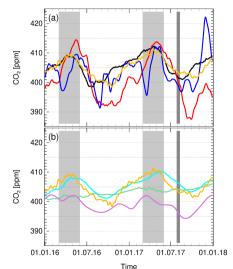
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017

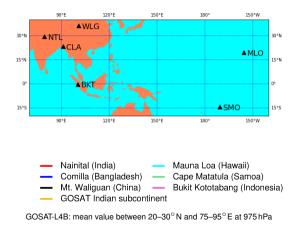
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh, ACP, 2024

Fossil CO₂ emissions

Friedlingstein et al., 2023, Global Carbon Budget 2023

- (a) Fossil CO₂ emissions for the globe
- (b) Territorial (solid lines) and consumption (dashed lines) emissions for the top country emitters (USA, China, India) and for the European Union

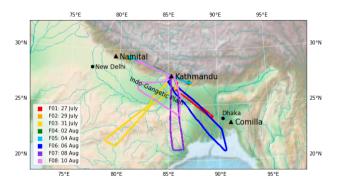

Ground-based CO₂ measurement sites in Asia World Data Centre for Greenhouse Gases (WDCGG)



https://gaw.kishou.go.jp

 Only a limited number of continuous ground-based measurements of CO₂ and of other Greenhouse Gases are available in South Asia, in particular on the Indian subcontinent.

Ground-based CO₂ measurements in Asia

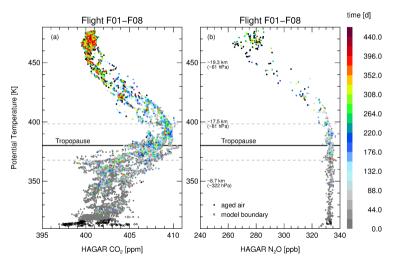


Nomura et al., ACP, 2021; World Data Center for Greenhouse Gases

Member of the Helmholtz Association

StratoClim aircraft measurement campaign

in Kathmandu (Nepal) in summer 2017

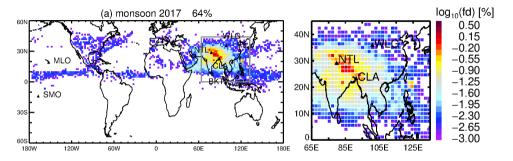


High-altitude aircraft Geophysica

 The StratoClim measurements constitute a unique data set in the Asian monsoon region up to ~ 20 km (~55 hPa or ~475 K)

CO₂ and N₂O aircraft measurements and transport time

- HAGAR = multi-tracer in situ instrument (University Wuppertal)
- high-resolution CO₂ measurements (3–5 seconds)
- CO₂ profiles reflect CO₂ variability at ground level
- N₂O profiles above 400 K indicates mixing with older stratospheric air
- transport time from CLaMS back-trajectories to 1 June 2016 driven by ERA5 reanalysis


Time periods and age of air of considered seasons

on Indian subcontinent

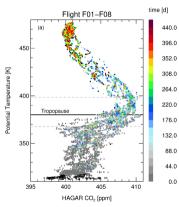
Season	Time period	Start Time	Age of air
Monsoon 2017 Pre-monsoon 2017 Winter 16/17 Post-monsoon 2016 Monsoon 2016 Aged air	June–September 2017 March–May 2017 December 2016 – February 2017 October–November 2016 June–September 2016 older than 1 June 2016	1 June 2017 1 March 2017 1 Dec 2016 1 Oct 2016 1 June 2016	\sim 2 months \sim 2-5 months \sim 5-8 months \sim 8-10 months \sim 10-14 months > 14 months

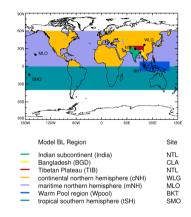
- Time when CLaMS back-trajectories driven by ERA5 (started along the flight tracks) reach the model boundary layer (BL) (~2-3 km above surface) corresponds to the age of air of measured air parcels.
- 90% of the air is younger than 1 June 2016, the other 10% is aged air


Air mass origin at Earth's surface during monsoon 2017

Frequency distribution (fd) of the air mass origins at the model boundary layer using CLaMS ERA5 back-trajectories

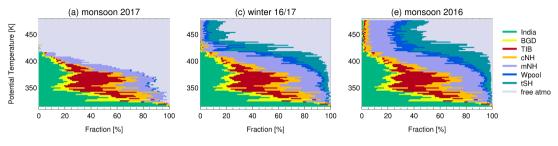
- Most air parcels were released at the model BL during monsoon 2017 (64%)
- from the northern part of the Indian subcontinent, the Tibetan Plateau, Bay of Bengal and eastern China

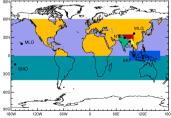

Air mass origin at Earth's surface during pre-monsoon 17 and winter 16/17



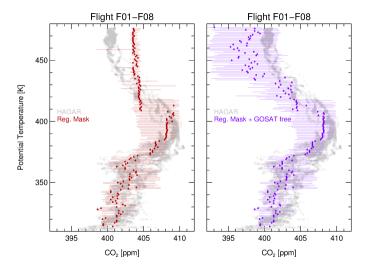
Frequency distribution (fd) of the air mass origins at the model boundary layer using CLaMS ERA5 back-trajectories

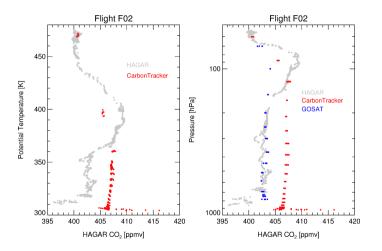
- Pre-monsoon 2017 (14%) and winter 16/17 (6%)
- During pre-monsoon 2017 the origins are shifted towards the tropics to the northern Inter-Tropical Convergence Zone (ITCZ)
- During winter 16/17 to the southern ITCZ


CO₂ reconstruction from observation sites



- CO₂ is chemically inert in the troposphere and stratosphere and can be used as an age tracer
- Reconstructed CO₂ from ground-based measurements
- CO₂ mixing ratios from ground-based measurements are prescribed at the time when each trajectory reach the model BL

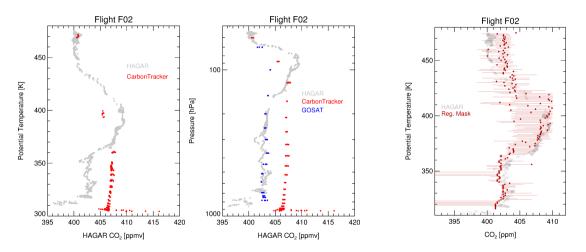

Accumulated fractions of air


- more than 90% air from the model boundary layer up to 410 K (winter 16/17)
- above 410 K air masses from the free atmosphere (aged air) have to be included

Reconstructed CO₂ using back-trajectories until 1 Dec 2016

- Reconstructed CO₂ profiles reflect CO₂ variability at ground level
- Reconstructed CO₂ is shown as median calculated from all trajectories
- Bars indicate the range between the 25 and 75 percentile
- CO₂ reconstructed by using a regional mask (observation sites)
- GOSAT-L4B CO₂ data used for stratospheric background
- The statistic treatment represents mixing between different air masses

Comparison with CarbonTracker and GOSAT-L4B Research Flight F02


 CarbonTracker (CT2019B) is a CO₂ measurement and modeling system

https://gml.noaa.gov/ccgg/ carbontracker

 GOSAT-L4B product is a model simulation using CO₂ surface fluxes inferred from column-averaged satellite measurements

https://data2.gosat.nies.go.
jp/index_en.html

Comparison with CarbonTracker and GOSAT-L4B Research Flight F02

Content

Part I

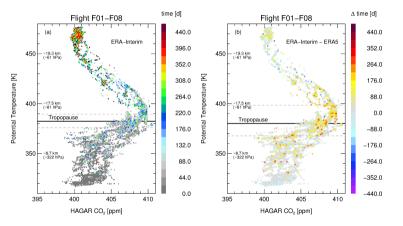
Reconstructing high-resolution in-situ vertical carbon dioxide profiles in the sparsely monitored Asian monsoon region

Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Rolf Müller, Prabir K. Patra, Martin Riese, Yukio Terao and Fred Stroh Communications Earth & Environment, 2023

Part II

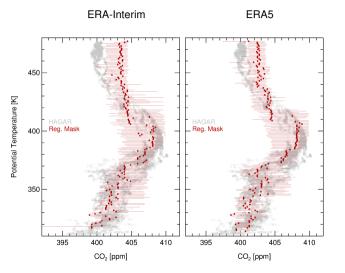
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017

Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh, ACP, 2024

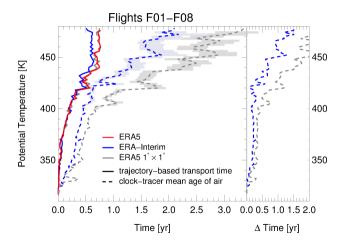

ECMWF reanalyses

ERA-Interim and ERA5

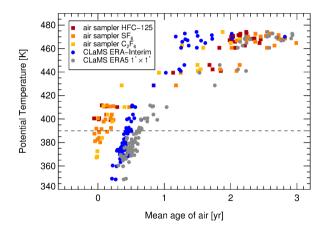
	ERA-Interim	ERA5
Horizontal resolution Horizontal gird Vertical resolution Temporal resolution Reference	T _L 255 (∼ 79 km) 0.75° × 0.75° 60 levels up to 0.1 hPa 6 hours Dee et al. (2011)	$\begin{array}{c} T_{\textit{L}}636~(\sim~31~\text{km})\\ 0.3^{\circ}~\times~0.3^{\circ}\\ 137~\text{levels up to}~0.01~\text{hPa}\\ 1~\text{hours}\\ \text{Hersbach and Dee}~(2016) \end{array}$


provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)

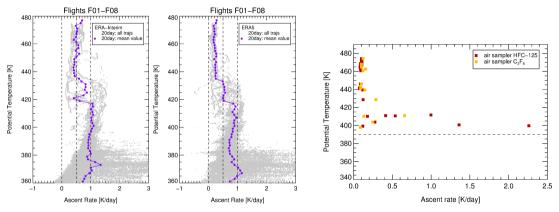
Differences in trajectory-based transport time ERA-Interim versus ERA5


- In the stratosphere, ERA-Interim has the tendency to be faster (shorter transport times) than ERA5 (bluish data points)
- In the UTLS, certain air masses are found to experience faster upward transport by convection using ERA5 rather than ERA-Interim (reddish points)

CO₂ reconstruction: ERA-Interim versus ERA5


- trajectories back until 1 June 2016 neglecting the contributions from the free atmosphere
- ERA-Interim vertical velocities are faster between 390 and 420 K → stronger dispersion
- convection is better reproduced in ERA5 (low CO₂ at \approx 360 K)

Mean age of air from multi-annual 3-dimensional CLaMS simulations driven by ERA-Interim and ERA5


- ERA5 with lower resolution = ERA5 1° × 1° a computing-time-saving alternative for multi-annual CLaMS simulations
- Mean age of air is interpolated along the Geophysica flight tracks
- strong difference between ERA-Interim and ERA5 (more than one year at 470 K)

Observation-base mean age of air from StratoClim

- observation-based mean age of air inferred from long-lived trace gases such as C₂F₆, HFC-125, SF₆ collected with the whole-air sampler of Utrecht University
- In the Asian monsoon region above 430 K, the mean age of air driven by ERA-Interim is too young, whereas the mean age of air from ERA5 (1° × 1°) is too old but somewhat closer to the observations

Mean ascent rates

- Effective ascent rates calculated as difference in potential temperature along backward trajectories driven by ERA-Interim and ERA5
- Observation-based mean ascent rates above 390 K derived from trace gas measurements of air samples collected with the whole-air sampler of Utrecht University

Conclusions

- Atmospheric concentrations of CO₂ have increased substantially because of human activities, however their sources in South Asia are poorly quantified.
- Lagrangian model simulations successfully reconstruct vertical CO₂ profiles obtained by high-resolution aircraft measurements up to 20 km during the Asian summer monsoon 2017.
- Reconstructed CO₂ profiles reflect CO₂ variability at ground level.
- Ground-based CO₂ signals rapidly propagate to approximately 13 km with slower ascent above.
- In situ aircraft measurements indicating a better representation of Asian monsoon transport in the newest ECMWF reanalysis product ERA5.
- A greater number of continuous ground-based measurements of CO₂ and also other GHGs in South Asia, in particular on the Indian subcontinent, would be a great asset for atmospheric and climate modeling.

Vogel et al., 2023, Communications Earth & Environment; Vogel et al., 2024, ACP

Network for the Detection of Atmospheric Composition Change (NDACC)

https://ndacc.larc.nasa.gov

Measurement Stations

Select a station on the map or in the list to access its public data.

Filter By:

Hemisphere

Northern Hemisphere

Southern Hemisphere

Latitudinal Band

Subtropics and Tropics

Mid Latitude

High Latitude

Instrument Status

- Active
- Active
- Inactive

Campaign

Instrument

- Brewer
- Dobson
- FTIR Spectrometer
- Lidar
- Microwave Radiometer
- Sonde
- UV/Visible Spectrometer
- UV Spectroradiometer

Working Group: Theory & Analysis

Sarah A. Strode, GESTAR-II, Goddard Space Flight Center, USA Bärbel Vogel, IEK-7, Research Centre Jülich, Germany

Acknowledgments

- Nepalese, Indian, and Bangladeshi authorities and Kathmandu airport authorities
- the Geophysica aircraft crews and pilots
- Thorben Beckert from University Wuppertal for HAGAR operations
- Manish Naja from Aryabhatta Research Institute of Observational Sciences, Md. Kawser Ahmed from University of Dhaka, and Shohei Nomura, Toshinobu Machida, Motoki Sasakawa Hitoshi Mukai from NIES for the Nainital and Comilla measurements
- the World Data Centre for Greenhouse Gases (WDCGG) for providing CO₂ and N₂O ground-based measurements
- Japan Aerospace Exploration Agency (JAXA), the National Institute for Environmental Studies (NIES), and the Ministry of the Environment (MOE) for providing the GOSAT L4B-data
- the NOAA Earth System Research Laboratory for providing Carbon-Tracker
- the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing ERA-Interim and ERA5 reanalyses