ATAL's inter-annual variability derived from Satellite Observations

J.-P. Vernier^{1,2}, R. Das^{1,2}, A. Pandit^{1,2} and M. Fromm³

- 1. National Institute of Aerospace
- 2. NASA Langley Research Center
- 3. Naval Research Laboratory

ATAL: Asian Tropopause Aerosol Layer AMA: Asian Monsoon Anticyclone

6 June 2024, Pune, STIPMEX

Outline

- 1) Science background about the ATAL
- 2) Reconsidering trend analysis from Kloss et al. (2024)
- 3) A deeper look at ATAL in 2003
- 4) ATAL during the SAGE III/ISS and CALIPSO era
- 5) Absolute necessity to remove years influenced years by volcanic eruptions and wildfires to study the ATAL
- 6) Updated SAGE and CALIPSO combined analysis

Increase of background stratospheric aerosol loadings observed at Mauna Loa Observatory

"Increase in anthropogenic sulfur gas emissions in the troposphere, it appears that a large increase in coal burning since 2002, mainly in China"

Satellite Observations CALIPSO

Solar Occultation

The Beer Lambert Law

• Scattering Ratio ~ Particle mixing ratio $SR = \frac{b_{(^+ + //)532}}{c}$

$$R = \frac{b_m}{b_m}$$

Depolarization

- CALIPSO nadir view : 80 180m resolution in the UTLS
- Operation: 2006-2023

Backscatter from Clouds/ __Aerosols

Summer Asian Monsoon influence on UTLS aerosols: The Asian Tropopause Aerosol Layer

Vernier et al., 2018, BAMS

Retrieval Algorithm:

- Data averaged every 1 degree along each orbit track
- Corrected for molecular scattering and ozone absorption
- Scattering Ratio : SR= $\frac{\beta mol + \beta a ero}{\beta mol}$; $\delta = \frac{\beta p erp}{\beta p a rallel}$
- Cloud removed when $\delta > 5\%$
- Volcanic years excluded : 2006 (Soufiere Hills) 2009 (Sarychev) ,2011 (Nabro)

CALIPSO

Trends analysis since the late 90's

Vernier et al., 2015, JGR

JGR Atmospheres

RESEARCH ARTICLE

10.1029/2023JD039784

Key Points:

Early space-borne observations (SAGE instruments) cannot be used for ATAL

Reconsidering the Existence of a Trend in the Asian Tropopause Aerosol Layer (ATAL) From 1979 to 2017

Corinna Kloss^{1,2}, Adriana Bossolasco^{1,3}, Larry Thomason⁴, Bernard Legras⁵, Gwenaël Berthet¹, Fabrice Jégou¹, Suvarna Fadnavis⁶, and Pasquale Sellitto^{7,8}

- Recent paper from Kloss et al. (2024) challenging those findings :

"We find that seasonal averaged solar occultation aerosol measurements (past and present) can neither be used to exclude the existence of the ATAL" *In other words : SAGE is not fully suited to study the ATAL*

Thomason and Vernier (2013) and Vernier et al. (2015) used SAGE II data to shows the existence so will revisit this apparent contradiction
 Kloss et al. (2017) used SAGE III/ISS to show the existence of the ATAL so will investigate another apparent contradiction

An ATAL feature is visible in July-August 2003 in Kloss et al. (2024)

0.25 0.50 0.75 1.00

2.0

Aerosol Extinction 10⁻³ km⁻¹

Angström exponent (--)

- Separation between cloud and aerosol layers
- Enhanced extinction with high ECR signature of aerosol layers
- Argument used in K24 : another feature is also visible in 2003 outside the AMA region

Comparison of the region inside and outside of the AMA box, July-August 2003

ATAL-

-2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 Extinction Coefficient (*10³) (Km^{-1})

- ATAL feature is visible (tropopause relative altitude between -3 km and 1 km).
- Double peak above and below the tropopause outside the AMA region (shape different than ATAL).
- Comparison of two different region to draw similarities may not be applicable here. AMA is a confined region generally limited from the outside transport.
- Outside AMA points (dashed box) are more spread out with higher extinction ratio and values.
- Investigation of the origin of these higher extinction is needed.

Likely influence of wildfires in 2003

AIRS/CO 31 July 2003 500 hPa

- Multiple Wildfires in Russia and Canada in July 2003
- TOMS Daily Max of AI suggests the presence of smoke throughout July 2003 from Russia
- CO from AIRS confirm the large-scale influence of those fires
- Still need to find which PyroCbs took place

SAGE III/ISS detection of the ATAL

- Kloss et al. 2017 shows the presence of the ATAL using SAGE III/ISS before arrival of Canadian wildfires
- Kloss et al. 2024 indicate that the ATAL can be visible on SAGE III/ISS on multiple-day basis (5-day in this case) but not on a seasonal-basis

UTLS aerosol variability is complex

GloSSAC Stratospheric Aerosol Optical Depth [0-60°N]

CALIPSO observations of UTLS aerosol

ATAL's among others stratospheric features

1.00

1.01

1.03

1.04

1.06

1.08

1.09

1.11

1.12

1.13

1.15

- Evidence for the existence of the ATAL outside periods affected by volcanic eruptions/wildfire
- Other features also visible
 June Layer, Smoke, BD

Circulation

Comparison between SAGE III/ISS and CALIPSO

- Similar profile shapes between CALIPSO and SAGE III/ISS
- Lidar Ratio (SAGE/CALIPSO) between 13-18 km inconsistent with what we would expect for aerosols

Perturbed regime makes the comparison more challenging mostly due to sampling difference between SAGE III and CALIPSO

- Multiple events affected UTLS aerosols between 2017-2023
- Possible reasons for discrepancy (Cloud screening, Lidar ratio, Sampling)

Sampling difference between SAGE III/ISS and CALIPSO

- CALIPSO orbit track provide regular obs. Grid ~16 days
- SAGE III/ISS occultation moves across latitudes each D

Combined Satellite-based gives a more complex picture than initial analysis

- Period 1: AOD relaxing from El Chinchon: aerosol max winter (strato air, more efficient cleansing of larger aerosols)
- Period 2: for selected years August largest AOD (1999, 2001, 2003)
- Period 3: Ideal period to study the ATAL
- Period 4: comparison between SAGE III and CALIPSO challenged by multiple events

Conclusions

- Removing years affected by volcanic eruptions/wildfires is critical to study the ATAL
- SAGE II/SAGE III observations can be used to study the ATAL but careful screenings is required
- Comparison between SAGE III/ISS and CALIPSO during 2017-2018 remains challenging due to multiple events entering AMA
- Long-term analysis between 1995-2024 still under investigation to remove years affected by volcanic eruptions/wildfires

Thank You !

Al about the ATAL

Me: Please, create a painting about the Asian Tropopause Aerosol Layer Gemini: Sure, here is a painting about the Asian Tropopause Aerosol Layer:

Gemini_Generated_Image_d90qdnd90q dnd90q

2017 and 2018 with SAGE III/ISS and CALIPSO

- Derive Lidar Ratio
- Trend discussion
- Wildfires and Volcanic eruptions should be excluded while looking at inter-annual variability
 Rubel :

Extinction profiles cloud-cleared with SER2 averaged between 5-105E and 15-45N at 525 (SAGE II) and 520 nm (SAGE III/ISS) Redo Figure cloud-clearing 5-105E instead 15-105

Trend analysis

• Exclude periods affected by volcanic activities

Extra Slides

Combined Satellite-based AOD 13-18km (15N-45N & 5E-105E)

ATAL

How to treat NaN (0 versus dot not consider a profile)

Alt (km)

GloSSAC by treating with np.mean and not np.nanmean

11:00 to 11:25 Tea/Coffee break/Day 2 Tuesday 4 June		
Rapporteur: Dr. Satheesh Chandran		
11:25 to 11:45 Lead oral	Dr. Jean-Paul, Vernier, NASA, LaRC, USA	ATAL's inter-annual variability derived from satellite observations and

15+5min

Combined Satellite-based AOD 13-18km (15N-45N & 5E-105E)

