

Tidal variability and aliasing effects from contemporaneous satellite, model, and reanalysis data in the Stratosphere

Uma Das¹, Subhajit Debnath¹, C J Pan², William Ward³

¹Indian Institute of Information Technology Kalyani, Kalyani, West Bengal, India ²Department of Space Science and Engineering, National Central University, Jhongli, Taiwan ³Department of Physics, University of New Brunswick, Fredericton, Canada

INTERNATIONAL WORKSHOP ON Stratosphere-Troposphere Interactions and Prediction of Monsoon weather EXtremes (STIPMEX) 03-07 June 2024, Indian Institute of Tropical Meteorology, PUNE

A brief Introduction to Tides

- Global scale periodic oscillations of the atmosphere.
- Classical tidal theory- Treats tides as linear perturbations on a background atmosphere dependent on latitude and altitude.
- Atmospheric tides are eigenmodes of the atmosphere described by Hough functions
- Amplitudes grow exponentially with height
- Excitation Mechanisms:
 - Thermal Forcing
 - Water vapor absorption in troposphere
 - Ozone absorption in stratosphere
 - Latent Heat Release in the troposphere
 - Ocean & Land differences

Various Tides are

- Diurnal (24 hr), Semi-Diurnal (12 hr) and Terdiurnal (8 hr) tides
- Migrating Tides Phase speed is equal to linear rotation speed of Earth
- Non-migrating Tides Phase speed is different (either slow or fast) from linear rotation speed of Earth.
- Non-linear interactions (migrating tides & stationary planetary waves)

Objectives

- To deduce short term tidal variability
- To address aliasing problems in the spectral analysis of satellite data - Mean variability aliases into DW1 & SPW1 aliases into DS0 and DW2
- To investigate the role of non-linear interactions in the generation of nonmigrating tides, specifically DS0 and DW2 produced by SPW1 and DW1

Satellite vs. Ground Based Measurements

Our datasets are from

• SABER

- An instrument onboard the TIMED satellite
- Measures CO₂ emissions in 10 infrared bands
- Temperatures are retrieved from these measurements
- Data available from 2002- present

• COSMIC

- Constellation of six satellites (FORMOSAT-3)
- Works on the principle of GPS RO
- Temperature in the lower atmosphere and electron density in the upper atmosphere are simultaneously retrieved.
- Data available from 2007 to present

• CMAM30

- Canadian Middle Atmosphere Model
- A retrospective estimate of the chemical and dynamical evolution of the atmosphere over the period 1981-2010
- Temperature and wind used in the present study.
- ERA-Interim
 - ERA-Interim is a global atmospheric reanalysis
 - Data was available from surface to 1 hPa and from 1 January 1979 to 31 August 2019 (Now, it is followed by the latest ERA-5)
 - Temperature and wind used in the present study.

Universal Time, hrs Universal -180 -90 0 90 Longitude, degrees -180 -90 Longitude, degrees Longitude, degrees

04/06/2024

-180 -90

Universal Time, hrs

Universal Time, hrs

Tidal Analysis from Satellite Data – SABER/TIMED and COSMIC

60 days data

11 days data

Simultaneous Retrieval of SPW and Tidal Parameters

$$T(t,\lambda) = T_0 + \sum_{i=1}^{3} \sum_{j=-4}^{4} T_{ij} \cos(2\pi f_i t + 2\pi s_j \lambda - \varphi_{ij}) + \sum_{k=1}^{3} T_k \cos(2\pi s_k \lambda - \varphi_k)$$

- Data $T(t,\lambda)$, where t and λ are time (in hours) and longitude (in degrees), are fit to the above function using **least squares fitting method**.
- T_0 is the zonal mean
- T_k and ϕ_k are amplitudes and phases of stationary planetary waves for wavenumbers k from 1 to 3 and
- T_{ij} and ϕ_{ij} are amplitudes and phases of tides for periods *i* from 1 to 3 (diurnal, semidiurnal and ter-diurnal tides) and wavenumbers *j* from -4 to 4.

Variability in COSMIC temperature

Mean, amplitude of DW1 and amplitude of SPW1 from COSMIC during 2009-2010 using a window of 21 days.

04/06/2024

Numerical Experiments:

1. Assume an atmosphere consisting of only a specific wave and perform the same analysis.

2. Spectral Analysis of this atmosphere shows that significant aliasing occurs from SPW1 into DS0 and DW2

S.No	Atmosphere	Equation	Results
1	Constant SPW1 amplitude	$T = 10 \times \cos(2\pi\lambda/360)$	SPW1 amplitude is extracted with no errors over either latitude.
2	Slowly varying SPW1 amplitude (period = 50 d)	$T = 10 + [10 \times \cos(2\pi t/50) \times \cos(2\pi \lambda/360)]$	Maximum amplitude is underestimated and minimum amplitude is overesti- mated. No aliasing is observed over the Equator; however, over 65° N, DS0 and DW2 components show equal and uniform aliasing of 1 K amplitudes. This happens at times of the maximum gradient in SPW1 amplitude.
3	Fast varying SPW1 amplitude (period = 10 d)	$T = 10 + [10 \times \cos(2\pi t/10) \times \cos(2\pi \lambda/360)]$	Average SPW1 amplitude is extracted. The periodic variation of 10 d is lost in the analysis. However, no DS0 and DW2 components are observed over either latitude.
4	Constant DS0 amplitude	$T = 10 \times \cos(2\pi h/24)$	Constant DS0 component extracted successfully. No aliasing into any other component is observed over either latitude.
5	Varying and large DS0 amplitude $(period = 10 d)$	$T = 10 + [10 \times \cos(2\pi t/10) \times \cos(2\pi h/24)]$	Average DS0 component is extracted. No aliasing into other components is seen over either latitude.
6	Varying and small DS0 amplitude (period $= 5 d$)	$T = 1 + [1 \times \cos(2\pi t/5) \times \cos(2\pi h/24)]$	Average DS0 component is extracted. No aliasing into other components is seen over either latitude.
7	Varying and small DW2 amplitude (period $= 5 d$)	$T = 1 + [1 \times \cos(2\pi t/5) \times \cos(2\pi h/24 + 2\pi\lambda/180)]$	Average DW2 component is extracted. No aliasing into other components is seen over either latitude.
8	Fast varying mean temperature (period $= 10 d$)	$T = 280 + 10 \times \cos(2\pi t/10)$	Average mean variation is extracted. Aliasing is observed in DW1, SPW1, DS0 and DW2, all showing amplitudes up to 1 K over the Equator and larger at 65°N. The large peaks observed in DW1 and SPW1 at 65° N indicate significant alias- ing.
9	Slowly varying mean temperature (period = 50 d)	$T = 280 + 10 \times \cos(2\pi t/50)$	Mean variation is extracted reasonably (in the range 273 to 287 K), with maxi- mum amplitudes underestimated by 3 K and minimum values overestimated by 3 K. Aliasing is observed in DW1, SPW1, DS0 and DW2, all showing ampli- tudes up to 1 K over the Equator and much larger at 65° N. Large peaks of 5 K are observed in DW1, and peaks of 3 K are observed in SPW1 at 65° N. Inter- estingly, the peaks in DW1 occur at times of the maximum gradient in mean temperature.
10	Constant mean temperature	T = 280	Mean temperature is extracted and absolutely no aliasing is observed over either latitude.

Results of numerical experiments from cases 1 to 7 (Table 1) for atmospheres considered to have only one variability among SPW1, DS0 and DW2.

Results of numerical experiments from cases 8 to 10 (Table 1) for atmospheres considered to have only a mean temperature variation.

Das et al 2020, Annales Geophysicae

04/06/2024

STIPMEX 2024

Fig. 5. Wavelet spectrograms of DS0 amplitude at 0.001 hPa, 1 hPa and 10 hPa over 25°N from CMAM30 zonal (U) wind data.

Fig. 6. Wavelet spectrograms of DS0 amplitude at 0.001 hPa, 1 hPa and 10 hPa over 25°N from CMAM30 meridional (V) wind data.

Das et al., 2024, Adv Space Res.

Numerical Experiments to identify aliasing due to satellite sampling

- CMAM30 and ERA-Interim datasets are resampled at times and locations of SABER and COSMIC measurements
- New datasets CSE, SSE, CSC, SSC – are analyzed by same methods as the satellite datasets.
- Comparisons with Fourier spectra of CMAM30 and ERA-Interim show the aliasing effects, particularly in the high latitude regions.

04/06/2024

STIPMEX 2024

04/06/2024

3 2

180

120 1

60

0 5

-60 8

120 9

180 9

7.2 -6.0 9

4.8

24 2

20 .

16 2

12 IPP

4 5

2007 2008 2009 2010 2011

04/06/2024

- SPW1 from CMAM30 and ERA-Interim datasets compare very well with the results from the resampled datasets.
- Tidal amplitudes extraction is very poor by SSE61 & SSC61 and relatively poor by CSE61 & CSC61.
- COSMIC provides a better sampling for extraction of tidal characteristics but has limited altitude coverage.
- SABER has good altitude coverage but sampling suffers from significant aliasing problems.

Das, 2022, JASTP

04/06/2024

STIPMEX 2024

Das et al., 2024, Adv Space Res. 04/06/2024

STIPMEX 2024

Das et al., 2024, Adv Space Res. 0

04/06/2024

Conclusions

- COSMIC gives better results compared to SABER as it is a constellation of six satellites and has better sampling required for investigation of tides.
- However, COSMIC, although having good global sampling, has limited altitude coverage and SABER having good altitude coverage, lacks sufficient sampling.
- Thereby, accurate deduction of tidal variability in middle and upper atmosphere from actual measurements is still a pending job!
- The current study via investigations of model and reanalysis data confirms that
 - Non-linear interactions are not important for generation of DS0 and DW2 in the high latitude stratosphere.
 - Non-linear interactions play an important role in generation of DW2 in equatorial and tropical mesosphere.

THANK YOU!

STIPMEX 2024

04/06/2024