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A study in contrasts

» Black et al. (2004) explored in detail the various causal factors behind the 2003 European
heatwave: persistent anticylone, SST anomalies, drying of land surface, surface fluxes....

— "It is not known at this time why the large-scale circulation had the character it did."

» Stott et al. (2004) ignored all those factors and targeted a much weaker, coarse-grained
‘event’ of only 1.6°C above the mean, to avoid 'selection bias'

* Black et al. is certainly highly cited, but Stott et al. has become the dominant paradigm
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mean daily temperatures! Averaging over
each month the temperature anomalies
were +4.2 degCin June, +3.8 degCin August
and almost +2 degC in May and July. The
temperature anomalies were most extreme
in France and Switzerland although maxi-
mum temperature records were broken in
many parts of Europe. For example, Schar
etal. (2004) have shown that the
June-July-August temperature averaged
for four Swiss stations exceeded the
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large-scale atmospheric flow and the
regional heat budget from ECMWF analyses
and measurements of the surface energy
budget at the University of Reading. The
influence of atmospheric flow anomalies on
the surface of the land and ocean, and pos-
sible feedbacks are also discussed.
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FREQUENCY per 10 years

INTENSITY increase

* Climate scientists like to describe changes in extreme events probabilistically, which

requires aggregation

Heavy precipitation over land
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Frequency and increase in intensity of heavy 1-day
precipitation event that occurred once in 10 years on
average in a climate without human influence
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Here the aggregation is over the entire land surface
and all kinds of heavy precipitation events

— Does this make any sense?

Note that the increased intensity simply follows
Clausius-Clapeyron scaling

— This is informative, but it is really only a prior

A factor that increases risk across a (statistical)
population, while of relevance for anybody interested
in effects on entire populations, cannot be reliably
applied to individuals within that population,
because the real world is not iid (e.g. Bueno de
Mesquita & Fowler 2021 Thinking Clearly with Data)

This is very well understood in other disciplines; so
why is it not understood within climate science?



At the regional scale, the traditional probabilistic attribution of changes in extremes is
challenged by uncertainties in model projections, and by lack of verifying data

* Yet there can be a wealth of climate information when it is expressed in conditional
form (see Chapter 10 of the IPCC AR6 WGI report)

* Using IPCC regions can obliterate important details (Mindlin et al. 2023 J. Clim.)
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* And how about cases where, even if the sign is correct, the observed trends lie outside

of what the climate models seem capable of producing?

* In France, the summer maximum of daily maximum temperature has been
increasing since 1950 up to five times faster than the global mean temperature
» About 1/3 of this is due to dynamical trends which are not present in any model
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* Maybe the models

underestimate
variability and the
observed dynamical
trend will reverse

Or maybe the
dynamical trend is
forced and the
models are missing it

Both represent
plausible causal
explanations



The most severe climate impacts are often exacerbated by the human-modified
environment

* Rather than being a ‘confounding effect’ for the effects of climate change, the
urban heat island effect is a threat multiplier for heat waves
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Figure 2-8: The urban heat island effect in The Hague - increased heat will affect more wulnerable neighbourhoods in The Hague



There is no such thing as a "natural" disaster

* Representing the socio-economic situation and the managed environment at a local
scale is crucial, as there are always multiple causal factors

* We need a forensic approach,
not a yes/no attribution to
climate change

* Moreover, the socio-economic
situation and the managed
environment are precisely the
causal factors that are to be
addressed through adaptation
measures!

Libya flooding of 2023
Karim Sahib—AFP/Getty Images




There is no such thing as a "natural” disaster

TasLe 10.1
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The relevant causal factors and their connections to impacts can be represented in a
causal network, which can be used to define storylines (Shepherd 2019 Proc. Roy. Soc. A)

* Provides a powerful alternative to traditional (unconditional) attribution when
uncertainties are high (Lloyd & Shepherd 2023 Env. Res. Clim.)
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* The storyline approach can be seen as conditional attribution, where some of the
causal elements are internal to the climate system (known as an "external driver" of
the effect in question), and their attribution to climate change is left open

* Fully consistent with the IPCC Detection & Attribution Guidance Paper (2010), but
traditionally, climate-change scientists have only considered unconditional attribution
Yet conditional

variability H 1 i
attribution is
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climate change Z:S;:zl in other aspects of
climate science,
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/ prediction
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(a) Causal model, with blanks to be filled in

Lloyd & Shepherd
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* The idea behind a causal network is to use all available physical information in the
estimation of a signal (whether for prediction or for attribution)

— This example uses Bayes theorem together with daily transition probabilities
between North Atlantic/European wintertime circulation regimes to boost the signal
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 The idea behind physical climate storylines is to provide a self-consistent
representation of correlated aspects of physical climate risk, i.e. of compound risk

— This example computes Climatic-Impact Drivers relevant to the viticulture sector in
South America, under two extreme storylines encompassing the full seasonal cycle
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"low Pacific warming" means

- low central and East Pacific warming

- weakened SPV (but strengthened in MA)
- high upper-tropospheric tropical warming

(G]

"high Pacific warming" means

- high central and East Pacific warming

- strengthened SPV (but weakened in MA)
- low upper-tropospheric tropical warming

Mindlin et al. (2024 Climate Services)



e Storylines constructed from seasonal hindcast ensembles can be used to supplement
seasonal outlooks during ongoing droughts

Winter precipitation anomalies for East

Anglia region (colour: SEASS hindcasts) In this study, which was performed in the summer of

2022 during drought conditions in southern England,
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Stratosphere

Troposphere

Probabilistic causal networks provide a way of quantifying the predictability of a target
variable arising from known physical drivers, and its dynamical updating

* This example is for the poleward (EDJ-1) and equatorward (EDJ-2) seasonal shifts of
the Southern Hemisphere eddy-driven jet, using ECMWF System 4
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Frequently Asked Questions
What about probabilities?

— It's better science to acknowledge that some uncertainties are epistemic than
to provide a sense of 'false precision' (Parker & Risbey 2015 Phil. Trans. A)

— If you wish to treat CMIP multi-model ensembles as probability distributions,
that is your right

— Causal networks can provide a link between storylines and probabilities
Aren't storylines too subjective?

— If the price of 'objectivity' is to bury the subjectivity in procedural protocols,
then that is not a price worth paying; it's better to be transparent

Aren't the number of storylines unlimited?

— A focus on decision relevance can narrow the possibilities dramatically
How do you determine what is physically plausible?

— This must be a process of co-development with the user



Concluding Remarks
To address adaptation challenges, we need to navigate the 'cascade of uncertainty' in
climate projections, and connect to the decision space

— The societally relevant question is not "What will happen?" but rather "What is the
impact of particular actions under an uncertain regional climate change?"

We need to find a scientific language for describing the 'plural, conditional’ state of
knowledge that exists at regional and local scales, and resist aggregation

— The storyline approach to regional climate information does exactly this
(see Shepherd 2019 Proc. Roy. Soc. A)

Linking to historical events, in their proper context, brings a salience to the risk; well
understood psychologically

— The historical record can be supplemented with storylines of extreme variability
selected from large model ensembles such as seasonal hindcasts

We need to explore storylines of climate risk, combining the best information from all
sources — interpreted not as a prediction but as representing plausible outcomes



