Deep-learning based downscaling
approaches for precipitation extremes:
an assessment over India

Pankaj Kumar

Associate Professor

Indian Institute of Science Education and Research (IISER) Bhopal

F D
o 2 D_w.ﬁ-
oiiiege .f 05/06/24 STIPMEX, ITTM Pune, 2-7 June 2024 iiSEnB



Acknowledgement to Group Members

Midhun M & Sreevastha Golla

Downscaling and reconstruction of high-
resolution gridded rainfall data over India using
deep learning-based generative adversarial
network. Modeling Earth Systems and
Environment (2023)

https://doi.org/10.1007/s40808-023-01899-9



https://doi.org/10.1007/s40808-023-01899-9

How close are we to reaching a global warming of 1.5°C?

*» According to IPCC AR6, the
temperature over the land has
risen to 1.59 °C [1.34 to 1.83]
compared to the 1850-1900 = e -
average w. r.t. 2011-2020 [FANE 30 Yo WA tiand lesdifg Ut i continued, 20C

global warming would reach 1.5°C by July 2033,

July 2033
» Human-induced GHG forcing is the M/(g __________________ e
main driver of the observed e (1.27°C
changes in hot and cold extremes
on the global scale (virtually
certain) and on most continents
(very likely).
. Climate models are capable of
addressing the science of climate . - . o
2000 2003 2006 2009 2012 2015 2018 2021 Apr 2023 Jul 2023 Oct 2023 Jan 2024
change but do show limitations at it i o g M G AN vk il TG Mty it s TGN

fine scales to capture extremes.
Earth’s global surface temperature relative to the

« The emerging AI/ML techniques pre-industrial period will be 1.5°C in July 2033

have shown a potential to address
it on a sub-grid scale.
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10-year event

Frequency and increase in intensity of extreme temperature
event that occurred once in 10 years on average

Unprecedented Warming and Increasing Extremes =

1850-1900 Present 1°C 1.5°C 2°C 4°C

Human influence has warmed the climate at a rate that is unprecedented
in at least the last 2000 years
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Future Projections Global Vulnerability of Climate Change

CO2 emissions
per capita

o o

emissions

LOW
Bl emissions

Those who contribute the least greenhouse gases
will be most impacted by climate change

d??i{\/”? “ '«7’ ""‘j‘*-»xﬂ“

\~ : Sy ~
Vulnerability to e N \:\?‘ * j : X .;-z— jﬁ
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The project accelerated warming will lead to R 52 o
. . . e . Low " J'r) % : { N =
significant sea-level rise, and it is projected by S vuinerabitty i ' : g
=t Samson et al 2011

the end of this century at least 12 coastal
Indian cities water levels will increase by 2-
3 feet, due to climate change

Source: IPCC AR6 C
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=113t @ Regional Earth System Modelling Framework (RESM): CORDEX-SA

Global Ocean Model RESM Components Experiments

___(MPIOM) Horizon'tal 0.229/0.11°
REMO (2009)  fhesolution
. . Vertical levels 27
Atmospheric (regional)
Boundary
g ERA-I,
Global Hydrology Model conditions CMIP5/6
(HD model)
Horizontal ~5to ~25 km
S § Ocean MPIOM (global) | Resolution over 10
s : @ W, T | it moen) [ S Vertical levels |40
External forcing out side : W < | S : - 3 ‘
coupleddonie Marine HAMOCC
; | | Biogeochemistry (global)
2% Coupling Area
ernal forcing out side (CORDEX-SA] { i .
o coulp:eddomain N ' _ . g ‘ H.yd rOloglcal H D (glObal) ReanalyS|S 0-50
RESM Framework: Kumar et al. 2022, Clim Dyn \ i e R Discharge
= = e ' Coupling frequency | MPIOM & REMO: 3 hourly; HD model: 1 day
S = . ® REsM (12km) . . . Hist: 1960-2014; Scenarios:1960-2100, excluding
S o ® RESM (25 Km) Simulation period .
’ ® REMO Spin-up
150 +———. ¥ .gz::ZEx
£ e
z’ 1.00 F=——_ i \\\
% 075 =~ \\\ \\\
'g \\\ " 5 RESM showed high skills compared to other suites
FosrL o SeRe X 9 of models over the CORDEX-SA region.
i \‘\. \ \\‘ % Kumar et al. 2022, Atmospheric Research
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Spatial biasedness
for intense rainfall,
that is, at 95th
percentile for six
RCMs with respect to
the observed
precipitation data set
from IMD

Kumari& Kumar (2023: Intl Journal of Climatology)



Climate data is at ‘Big Data’ scale

Observed & Simulated

“Big Data™
Value
Reliability of Dat:
SHCSNHRE e R Patterns & Knowledge
Volume
, Data Size Small & Digestible
; Velocity N Real-time critical in
| Speed of Diats Chianige some areas, not all
Integrated across
Variety disciplines
Diverse Data Source Confid
onfidence
; A robustness
Veracity
L Uncertainty of Data
- 3 \
Varlablllty Big data chall in geoscientific context (Illustration recreated

from Reichstein est al., 2019, Nature)

L Changes within Data

Knowledge from Data! Data from Knowledge. >

* Climate science is now a ‘Big Data’ problem!
* Analysis and interpretation of climate data require the use of more and more, new and regressive techniques.

* The current framework of climate modelling can be greatly benefitted from emerging data-driven techniques like
Artificial Intelligence/Machine Learning/Deep Learning (AI/ML/DL).

C)M
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Deep learning and process understanding for data-driven Earth
system science

Machine Learning Earth Science Machine Learning Earth Science

c Video prediction Short-term forecasting

a Object classification and localization Pattern classification % X
Time

o

l Predict future visual

Cat: 0.982 "=as.
e

representation
¢ X)
',)(xlti)
b Super-resolution and fusion Statistical downscaling and blending o Language translation Dynamic time series modelling
§ . LIPSV ) )
8x8 32x32 Ground : T 4 Er liebte zu essen . Real vs predicted humidity values
input samples truth Aall | P ra/ ““!:“: Softmax E R B
gl Decoder .
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ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (AI-ML)

Artificial Intelligence (AI): Enabling machines to think.
v" Learning, reasoning and problem solving.

: : Artificial Intelli
Machine Learning (ML): Computer algorithms to accomplish Al PRI HIETIEEnee

v Advanced computational statistics.
v" Training and testing

Deep Learning (DL): Highly advanced ML algorithms.
v" Deep neural networks

Machine Learning

Machine Learning

:._/ C
& 7 \."ﬂ 0 %%E = : Deep Learning

Input Feature extraction Classification Output

, Neural Networks
Deep Learning

Feature extraction + Classification Output
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DEEP NEURAL NETWORKS

Artificial Neural Network (ANN):
v Multiple perceptrons (or neurons)
v" Feed forward neural networks

Recurrent Neural Network (RNN):
v" A looping constraint on the hidden layer of ANN turns to RNN.
v Long Short-Term Memory (LSTM)

Convolution Neural Network (CNN):
v’ Extract the relevant features from the input using the convolution

operation. ‘ Input Layer ' Hiden Layers ’ Output Layer

NEURAL NETWORKS
Obz O ) ANN RNN CNN
* Tabular data * Time Series data |/ Image data
* Image data * Text data * Video processing
e Text data e Audio data

v°GL” Recurrent Neural Network Feed-Forward Neural Network \ / \ % /
Nl STIPMEX, IITM Fune, 2-7 June 2024 TR {T]



Towards Earth Artificial Intelligence

Random Neural
Forest Network
Vector o WL - Reinforcement
Model s Learning
Atmosphere Hydrology

K Nearest

Expert
Neighbors Geosphere p

Biosphere System

Deep
Belief

Network Qceanography

Generative
adversarial network

Hidden
Markov

Cryosphere

The novel data-driven
techniques are capable of
identifying patterns from
‘big data’

Sun et al., 2022, A Review on
Earth Artificial Intelligence
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Different Hybridization to Improve Numerical

Weather/Climate Modelling Systems

Initialization/

DA

|

Earth System Modelling Process flow

-

Better ML Retrieval Algorithms
Fast ML Forward Models

ML Observation Operators

MODEL

~

—
DYNAMICS | ¢

PHYSICS

l

 Fast ML Radiation

e Fast ML Physics

e Fast & Better Microphysics
* New ML Parameterizations

Post-
Processing

!

 Deep downscaling

* ML Bias Corrections

* Nonlinear MOS

* Nonlinear ML
ensemble averaging
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Precipitation Downscaling

———————————————————————————————————

i HIGH RESOLUTION (HR) ;

High-resolution precipitation data is
required by various scientific, societal and
management sectors.

v’ Climate change assessments

v’ Agriculture

v Hydrological modelling

v" Environmental impact studies

v Urban planning and infrastructure
v' Disaster management

| DOWNSCALING

0.40

0.35 1

/Climate data downscaling

0.30 1

Deriving high-resolution data from a low- ol Precipitation data:
resolution Global Climate Models (GCM) 2020/ <}_ Skewed distribution
dataset. & 0.151 with sparse extreme
e.g.: dynamical methods, statistical - values.
methods, & Al/ML methods - zzz L
0 50 100 150 200 250 300
Precipitation (mm/day) c e
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Generative Adversarial Networks (GANSs)

* GANs are initially proposed by
Goodfellow et al. (2014).

* GANs are an advanced class of
deep learning algorithms
consisting of two separate deep

\ neural networks: a generator

a) b)

Input LR W

‘maind SRResNet

and a discriminator.

Generated Target |
HR HR

-----1
|
I
1

| Optimizer g = The generator tries to generate
updates G Discriminator

prrainable NN ¢ = = = = = = - fake samples out of a given

I parameters (D) Optimizer | . . .

Ml i input/noise, while the

} i discriminator distinguishes the
""" = actual samples from the artificial

samples generated by the

generator.

Optimizer

| updates

I trainable

: parameters

Adversarial Loss

- e G

Binary Classification
(Real /Fake)

a) Supervised training b) Adversarial training

i
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Super-resolution Generative Adversarial Network (SRGAN)

a) Generator (SRResNet)

skip connections in RRDB W ivputigyer W activation = SRGAN is optimized by minimizing GAN loss
.— convolution2D . dense . . .
= (perceptual loss), which is the weighted sum
N batch normalization of content loss and adversarial loss (Ledig et

al,, 2017).

= Content loss is the key to performance of
- | SRGAN, which is minimized at feature space
rather than pixel/grid space.

T

n3s1
RRDB RRDB RRDB  RRDB

b) Discriminator nist [ SR _ l)f R 4 1031 g'gn
5x5 3x3 N 7
- s

content loss adversarial loss
N =

perceptual loss (for VGG based content losses)

REAL

FAKE (Ledig et al., 2017)

nis1 n8si
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Data & Study Area

T 3

* Gridded rainfall data provided by India P -'1 .. - IMD Stations
Meteorological Department (IMD) N ek '
e IMD provide this data at low-resolution (1°x1°

~100 KM) and high-resolution (0.25°x0.25°~25
KM)

* Period of study: 1901-2019

* In this study, only data for June-July-August-
September (JJAS) is used.

Training set Testing set

1901-1999 JJAS 2000-2019 JJAS

(12078 timesteps) | (2440 timesteps) — . ————
0 1000 2000 3000 4000 5000 60(
Elevation (m)

70°E 75°E 80°E 85°E 90°E 95°E

O i
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Experiment Design for Gridded Rainfall

Pretrained VGG-19

block2_conv2

block3 _conv4

block5_conv4

SRGAN Experiments are designed
based on pretrained VGG-19 based
feature extraction

Experiment .. Hyperparameters &
D
(Model) escription Specifics
BCSD Bias correction and spatial disaggregation
The generator network is trained stand-alone | Learning rate = 0.0001,
SRResNet in supervised training mode. Optimized by | Batch size = 64,
minimizing the MSE loss function. 30% Validation split
Adversarial training. Content loss is MSE loss
SRGAN-MSE between generated and real HR. No feature
extraction involved.
Adversarial training. Content loss optimized
SRGAN- .
at high-level features generated from VGG-19
VGGB2
block2_conv2 layer.
SRGAN- Adversarial training. Content loss optimized
VGGB3 at intermediate-level features generated | Trained on batches of
from VGG-19 block3_conv4 layer batch size 64,
Learning rate = 0.0001
Adversarial training. Content loss optimized
SRGAN-
VGGBA at low-level features generated from VGG-19

05/06/24
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Results: Overall Agreement

Downscaling Method RMSE PBIAS
BCSD 0.601 13.659 5.834 -3.106

SRResNet 0.657 12.25 5.399 -8.418
SRGAN-MSE 0.647 12.373 5.444 -10.005
SRGAN-VGGB2 0.603 13.28 5.448 -46.169
SRGAN-VGGB3 0.541 14.441 6.245 -23
SRGAN-VGGB4 0.539 14.218 6.086 -29.083

Performance metrics such as RMSE (mm/day),
MAE (mm/day), PBIAS (%) and Pearson’s
correlation coefficient (CC) of the trained
models, calculated aggregately over India.

SRResNet SRGAN-MSE

35°N 35°N 4 1.0

30°N 30°N 4 0.9
08 e Spatial map of correlation coefficients (CC)
07 calculated for each grid point of downscaled data
0.6 from BCSD, SRResNet, SRGAN-MSE, SRGAN-
T e T e e e R e S R e O e . G e 05§ VGGBZ, SRGAN-VGGB3 and SRGAN-VGGB4 with
SREANNGERS SREANNCERE SREAN Y CEE 0-4.193 IMD-HR during the test period (2000-2021 JJAS).
038 « The CC values are significant at 95% confidence
- interval. The region enclosed within the blue

' bounding box is the Monsoon Core Zone (MCZ).
0.1
-

"v _.'. ) 3 ,\ C [ ]
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Results: Conditional Bias

| T I (N IR — &=
Description term used | Rainfall amount L2 g STk Rk i
(mm/day) L 201 ~® SRResNet
: : ' b\ @~ SRGAN-MSE
Very I|ght rain (VLR) 0.1-24 . i e SRGAN-VGGB2
. . B 1151 N\ W e SRGAN-VGGB3
Light rain (LR) 2.5-7.5 g . n:‘:.:‘;:\ ~e< SREANNVGGBA
Moderate rain (MR) 7.6 —35.5 =0T
Rather heavy rain (RHR) 35.6 - 64.4 £ 105
c - =
Heavy rain (HR) 64.5-124.4 S o ool %, 8
L i e - R i —— D G
Very heavy rain (VHR) 125-244.4 ™ :' “*“\T;‘:Ei:::‘-’-‘-t‘fi """"" -_::‘_:
Extremely heavy rain (EHR) > 244.5 095 ¥ N i :
T LR MR RHR HR VHR EHR
Various categories of rainfall events and Ralriafl latenslty Categonies
respective rainfall intensity ranges as Conditional bias with respect to various Rainfall Intensity
defined by India  Meteorological Categories as shown by various downscaling methods followed
Department (IMD) in this study. The description of the rainfall categories are given

in Table

Gy i
05/06/24 STIPMEX, IITM Pune, 2-7 June 2024 19 TR {T]




Results: A Realtime Examples of extreme precipitation events > 99t Percentile

BCSD SRGAN-VGGB3 IMD-HR
0.803

08 JUL 2007

! : : _— ; :
0 <. 10 20 30 40 50 o660 70 80 90 100 120

Rainfall (mm/day)
The SRGAN reconstructed a perceptually similar rainfall map compared to BCSD, with better representation at sub-grid scale

i
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Results: Some Realtime Examples of extreme precipitation events > 99t Percentile

26 JUL 2015 08 JUL 2007 24 AUG 2003

14 SEP 2021

BCSD

SRResNet

SRGAN-MSE

SRGAN-VGGB2

SRGAN-VGGB3

SRGAN-VGGB4

IMD-HR

0.768

@*}

0.766

A

0.658

0.859

Ty

0.856

$ 7 0.802

il

Examples showing the actual
and generated rainfall maps.
Each column indicates the
downscaling methods. Each
row indicates various
samples. The correlation
coefficient of each sample
with respect to IMD-HR is
labelled in blue.

[ — | B il
0 5 10 20 30 40 50 60 70 80 90 100 120
Rainfall (mm/day)
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Conclusions

A highly efficient image super-resolution technique (SRGAN) 1s adopted and applied for
downscaling gridded rainfall data over India. The SRGAN i1s optimized for pre-trained VGG-19-based
perceptual loss, and the SRGAN-VGG-b3c4 variant achieved good perceptual similarity compared to
the actual data (from visual inspection).

It implies that the GAN training strategy is more powerful than the supervised learning strategy in
preserving minute details. Also, it is noticeable that the SRGAN failed to reconstruct the overall
statistics of the reconstructed data.

* The complicated deep learning models do not guarantee better results. Finding the optimum balance
between model complexity and performance requires more experiments and fine tuning.

Future Outlook

» Increase the physical consistency of SRGAN model by adding the advantage of static fields
(orography and land-sea mask) and dynamic variables (e.g., temperature, humidity, windspeed etc.).

» Apply it for downscaling ESMs/RESMs future projections.

Thank you for your kind attention! c: W o
23
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