Deep-learning based downscaling approaches for precipitation extremes: an assessment over India

Pankaj Kumar

Associate Professor

Indian Institute of Science Education and Research (IISER) Bhopal

ST

Acknowledgement to Group Members

Midhun M & Sreevastha Golla

Downscaling and reconstruction of highresolution gridded rainfall data over India using deep learning-based generative adversarial network. *Modeling Earth Systems and Environment (2023)*

https://doi.org/10.1007/s40808-023-01899-9

How close are we to reaching a global warming of 1.5°C?

- According to IPCC AR6, the temperature over the land has risen to 1.59 °C [1.34 to 1.83] compared to the 1850-1900 average w.r.t. 2011-2020
- * Human-induced GHG forcing is the main driver of the observed changes in hot and cold extremes on the global scale (virtually certain) and on most continents (very likely).
- * Climate models are capable of addressing the science of climate change but do show limitations at fine scales to capture extremes.
- * The emerging AI/ML techniques have shown a potential to address it on a sub-grid scale.

----- Temperature trend ----- Observed temperature change since pre-industrial times ----- IPCC "likely" estimate ----- IPCC projections

Earth's global surface temperature relative to the pre-industrial period will be **1.5^oC** in **July 2033**

10-year event

will likely

occur

4.1 times

(2.8-4.7)

will likely

occur

5.6 times

(3.8-6.0)

2

REQUENCY

Once

now likely

occurs

2.8 times

(1.8-3.2)

Heatwave

4°C

will likely

OCCUL

9.4 times

(8.3-9.6)

Human influence has warmed the climate at a rate that is unprecedented in at least the last 2000 years

Changes in global surface temperature relative to 1850–1900

Future Projections

The project accelerated warming will lead to significant **sea-level rise**, and it is projected by the end of this century at least **12 coastal Indian cities water levels will increase by 2-3 feet**, due to climate change

05/06/24

Source: IPCC AR6

Global Vulnerability of Climate Change

Those who contribute the least greenhouse gases will be most impacted by climate change

Regional Earth System Modelling Framework (RESM): CORDEX-SA

RESM Components	Models	Experiments		
	REMO (2009) (regional)	Horizontal Resolution	0.22º/0.11º	
Atmosphoria		Vertical levels	27	
Athospheric		Boundary conditions	ERA-I, CMIP5/6	
	MPIOM (global)	Horizontal	~5 to ~25 km	
Ocean		Resolution	over IO	
		Vertical levels	40	
Marine Biogeochemistry	HAMOCC (global)			
Hydrological Discharge	HD (global)	Reanalysis	0.5 ⁰	
Coupling frequency	MPIOM & REMO: 3 hourly; HD model: 1 day			
Simulation period	tion period Hist: 1960-2014; Scenarios: 1960-2100, excluding spin-up			

RESM showed **high skills** compared to other suites of models over the **CORDEX-SA** region.

Kumar et al. 2022, Atmospheric Research

Spatial **biasedness** for intense rainfall, that is, at **95th percentile** for **six RCMs** with respect to the observed precipitation data set from **IMD**

Kumari& Kumar (2023: Intl Journal of Climatology)

STIPMEX, IITM Pune, 2-7 June 2024

Climate data is at 'Big Data' scale

- * Climate science is now a 'Big Data' problem!
- * Analysis and interpretation of climate data require the use of more and more, new and regressive techniques.
- The current framework of climate modelling can be greatly benefitted from emerging data-driven techniques like Artificial Intelligence/Machine Learning/Deep Learning (AI/ML/DL).

Deep learning and process understanding for data-driven Earth system science

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (AI-ML)

DEEP NEURAL NETWORKS

Artificial Neural Network (ANN):

- ✓ Multiple perceptrons (or neurons)
- \checkmark Feed forward neural networks

Recurrent Neural Network (RNN):

- \checkmark A looping constraint on the hidden layer of ANN turns to RNN.
- ✓ Long Short-Term Memory (LSTM)

Convolution Neural Network (CNN):

Extract the relevant features from the input using the convolution operation.

Towards Earth Artificial Intelligence

The novel data-driven techniques are capable of identifying patterns from 'big data'.

Sun et al., 2022, A Review on Earth Artificial Intelligence

Different Hybridization to Improve Numerical Weather/Climate Modelling Systems

Precipitation Downscaling

High-resolution precipitation data is required by various scientific, societal and management sectors.

- ✓ Climate change assessments
- ✓ Agriculture
- ✓ Hydrological modelling
- Environmental impact studies
- $\checkmark~$ Urban planning and infrastructure
- ✓ Disaster management

Climate data downscaling Deriving high-resolution data from a lowresolution Global Climate Models (GCM)

dataset. *e.g.: dynamical methods, statistical methods, & AI/ML methods*

Generative Adversarial Networks (GANs)

- GANs are initially proposed by *Goodfellow et al. (2014).*
- GANs are an advanced class of deep learning algorithms consisting of two separate deep neural networks: a generator and a discriminator.
- The generator tries to generate fake samples out of a given input/noise, while the discriminator distinguishes the actual samples from the artificial samples generated by the generator.

Super-resolution Generative Adversarial Network (SRGAN)

- SRGAN is optimized by minimizing GAN loss (perceptual loss), which is the weighted sum of content loss and adversarial loss (Ledig et al., 2017).
- Content loss is the key to performance of SRGAN, which is minimized at feature space rather than pixel/grid space.

$$l^{SR} = \underbrace{l_X^{SR}}_{\text{content loss}} + \underbrace{10^{-3}l_{Gen}^{SR}}_{\text{adversarial loss}}$$
perceptual loss (for VGG based content losses)
(Ledig et al., 2017)

Data & Study Area

- Gridded rainfall data provided by India Meteorological Department (IMD)
- IMD provide this data at low-resolution (1°x1° ~100 KM) and high-resolution (0.25°x0.25°~25 KM)
- Period of study: **1901-2019**
- In this study, only data for June-July-August-September (JJAS) is used.

Training set	Testing set	
1901-1999 JJAS	2000-2019 JJAS	
(12078 timesteps)	(2440 timesteps)	

Experiment Design for Gridded Rainfall

SRGAN Experiments are designed based on pretrained VGG-19 based feature extraction

Experiment (Model)	Description	Hyperparameters & Specifics	
BCSD Bias correction and spatial disaggregation			
SRResNet	The generator network is trained stand-alone in supervised training mode. Optimized by minimizing the MSE loss function.	Learning rate = 0.0001, Batch size = 64, 30% Validation split	
SRGAN-MSE	Adversarial training. Content loss is MSE loss between generated and real HR. No feature extraction involved.	Trained on batches of batch size 64, Learning rate = 0.0001	
SRGAN- VGGB2	Adversarial training. Content loss optimized at high-level features generated from VGG-19 block2_conv2 layer.		
SRGAN- VGGB3	Adversarial training. Content loss optimized at intermediate-level features generated from VGG-19 block3_conv4 layer		
SRGAN- VGGB4	Adversarial training. Content loss optimized at low-level features generated from VGG-19 block4_conv4 layer		

17

05/06/24

Results: Overall Agreement

Downscaling Method	CC	RMSE	MAE	PBIAS
BCSD	0.601	13.659	5.834	-3.106
SRResNet	0.657	12.25	5.399	-8.418
SRGAN-MSE	0.647	12.373	5.444	-10.005
SRGAN-VGGB2	0.603	13.28	5.448	-46.169
SRGAN-VGGB3	0.541	14.441	6.245	-23
SRGAN-VGGB4	0.539	14.218	6.086	-29.083

Performance metrics such as RMSE (mm/day), MAE (mm/day), PBIAS (%) and Pearson's correlation coefficient (CC) of the trained models, calculated aggregately over India.

- Spatial map of correlation coefficients (CC) calculated for each grid point of downscaled data from BCSD, SRResNet, SRGAN-MSE, SRGAN-VGGB2, SRGAN-VGGB3 and SRGAN-VGGB4 with IMD-HR during the test period (2000-2021 JJAS).
- The CC values are significant at 95% confidence interval. The region enclosed within the blue bounding box is the Monsoon Core Zone (MCZ).

5-mi 18

Results: Conditional Bias

Description term used	Rainfall amount (mm/day)
Very light rain (VLR)	0.1 – 2-4
Light rain (LR)	2.5 – 7.5
Moderate rain (MR)	7.6 – 35.5
Rather heavy rain (RHR)	35.6 - 64.4
Heavy rain (HR)	64.5 - 124.4
Very heavy rain (VHR)	125 - 244.4
Extremely heavy rain (EHR)	> 244.5

Various categories of rainfall events and respective rainfall intensity ranges as defined by India Meteorological Department (IMD)

Conditional bias with respect to various Rainfall Intensity Categories as shown by various downscaling methods followed in this study. The description of the rainfall categories are given in Table

19

05/06/24

Results: A Realtime Examples of extreme precipitation events > 99th Percentile

Results: Some Realtime Examples of extreme precipitation events > 99th Percentile

Examples showing the actual and generated rainfall maps. Each column indicates the downscaling methods. Each row indicates various samples. The correlation coefficient of each sample with respect to IMD-HR is labelled in blue.

Conclusions

- A highly efficient image super-resolution technique (SRGAN) is adopted and applied for downscaling gridded rainfall data over India. The SRGAN is optimized for pre-trained VGG-19-based perceptual loss, and the SRGAN-VGG-b3c4 variant achieved good perceptual similarity compared to the actual data (from visual inspection).
- It implies that the GAN training strategy is more powerful than the supervised learning strategy in preserving minute details. Also, it is noticeable that the SRGAN failed to reconstruct the overall statistics of the reconstructed data.
- The complicated deep learning models do not guarantee better results. Finding the optimum balance between model complexity and performance requires more experiments and fine tuning.

Future Outlook

- Increase the physical consistency of SRGAN model by adding the advantage of static fields (orography and land-sea mask) and dynamic variables (e.g., temperature, humidity, windspeed etc.).
- > Apply it for **downscaling ESMs/RESMs** future projections.

Thank you for your kind attention!

