

ž

R

四日

1

NATIONAL WEATHER SERVICE

NOAA

On the Development of NOAA Unified Forecast System -- Reducing Extreme Weather Forecast Biases with Improved Model Physics

Fanglin Yang Physics and Dynamics Division NOAA/NWS/NCEP Environmental Modeling Center

Acknowledgment: This presentation is made possible with contributions from EMC model developers and community collaborators. NOAA NWS/OSTI and OAR/WPO program offices are acknowledged for providing funding support for some of the projects described in this presentation.

International workshop on "Stratosphere-Troposphere Interactions and Prediction of Monsoon weather EXtremes" (STIPMEX) at IITM, Pune during 3-7 June 2024.

- Current NOAA NCEP Operational Systems
- Unified Forecast System Applications
- Development of UFS Physics to Improve Extreme Weather Forecasting

ž

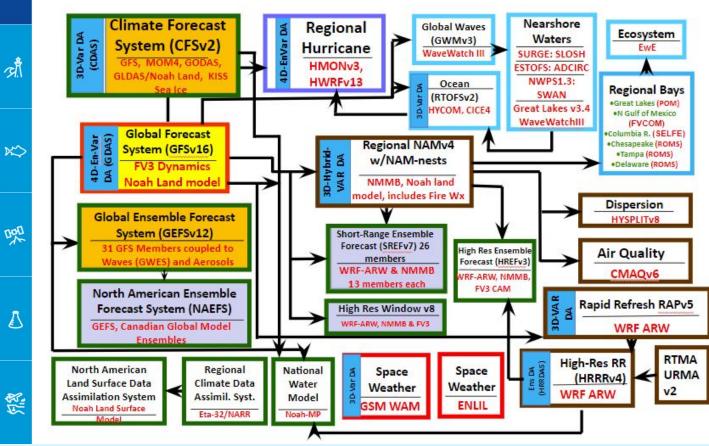
औ

R

51.23 51.23

Acknowledgements to UFS Active Developers

Data Assimilation


Atmospheric Physics

 NCEP/EMC: Jongil Han, Michael Barlage, Anning Cheng, Bing Fu, Hong Guan, Sanath Kumar, Xu Li, Wei Li, Qingfu Liu, Eric Sinsky, Ruiyu Sun, Kevin Viner, Helin Wei, Bo Yang, Fanglin Yang, Rongqian Yang, Weizhong Zheng, Xiaqiong Zhou ESRL/GSL: Ben Green, Joseph Olson, Tanya Smirnova, Shan Sun, Xia Sun, Michael Toy JCSDA/UCAR:Dom Heinzeller, ESRL/PSL: Lisa Bengtsson, Jian-Wen Bao, Clara Draper, Grant Firl, Songyou Hong, Philip Pegion, Dustin Swales DTC: Ligia Bernardet, Weiwei Li, Man Zhang 	NCEP/EMC: Catherine Thomas, Guillaume Vernieres, Daryl Kleist, Cory Martin, Andrew Collard, Jiarui Dong, Andy Eichmann, Travis Elless, Nick Esposito, Iliana Genkova, Azadeh Gholoubi, Brett Hoover, Xin Jin, Emily Liu, Haixia Liu, Hyun-Chul Lee, Xuanli Li, Ron McLaren, Dagmar Merkova, Sudhir Nadiga, Shastri Paturi, Ashley Stanfield, Steve Stegall, Andy Tangborn, Russ Treadon, Yaping Wang, Youlong Xia CIRES/GSL: Bo Huang, Mariusz Pagowski PSL: Clara Draper, Jeff Whitaker JCSDA/UCAR: Kriti Bhargava, Travis Sluka	NCEP/EMC: Jessica Meixner, Jiande Wang, Lydia Stefanova, Jun Wang, Yuejian Zhu, Neil Barton, Saeideh Banihashemi, Arun Chawla, Bing Fu, George Gayno, Robert Grumbine, Walter Kolczynski, Matthew Masarik, Avichal Mehra, Ali Salimi-Tarazouj, Denise Worthen ESRL/GSL: Ben Green, Shan Sun ESRL/PSL: Lisa Bengtsson, Phillip Pegion GFDL: Alistair Adcroft, Rusty Benson, Stephen Griffies, Robert Halberg, Matthew Harrison, Brandon Reichl, Marshall Ward NCAR: Alper Altuntas, Gokhan Danabasoglu, Keith Lindsay, Gustavo Marques NRL/ESMF: Gerhard Theurich GMU: Ben Cash, Jim Kinter, Lawrence Marx, Cristiana Stan
Field Evaluation	Products	FSU: Alexandra Bozec, Eric Chassignet, Alan Wallcraft NASA: Akella Santha Univ. Alaska: Katherine Hedstrom
NCEP/EMC: Geoff Manikin, Alicia Bentley, Mallory Row, Shannon Shields NWS Regional SSDs NCEP Centers	NCEP/EMC: Hui-Ya Chuang, Andrew Benjamin, L. Gwen Chen, Yali Mao, Wen Meng, Bo Cui	U. Mich.: Christiane Jablonowski Univ. Victoria: Andrew Shao
Atmospheric Composition	Infrastructure	Coupled Model Evaluation
NCEP/EMC: Partha Bhattacharjee, Jeff McQueen, Raffaele Montuoro, Li Pan, Ivanka Stajner ARL: Barry Baker, Patrick Campbell, Rick Saylor ESRL/GSL: Georg Grell, Shan Sun, Li (Kate) Zhang CSL: Gregory Frost, Jian He, Stuart McKeen, Siyuan Wang NESDIS/STAR: Ethan Hughes, Shobha Kondragunta, Xiaoyang Zhang	NCEP/EMC: Rahul Mahajan, Jun Wang, Arun Chawla, Kate Friedman, Lin Gan, George Gayno, Ed Hartnett, Dusan Jovic, Walter Kolczynski, Hang Lei, Terry McGuinness, Alex Reichert, Mallory Row, Edward Stafford, Henry, Winterbottom, Jack Wollen, Denise Worthen Redline Performance: David Huber	NCEP/EMC: Lydia Stefanova, Jiande Wang, Michael Barlage, Neil Barton, Partha Bhattacharjee, Zhichang Guo, Robert Grumbine, Wei Li, Avichal Mehra, Jiayi Peng, Sulagna Ray, Huug van den Dool, Helin Wei, Youlong Xia, Weizhong Zheng CPC: Laura Ciasto, Yanyun Liu, Wanqiu Wang, Jieshun Zhu ESRL/PSL: Chris Cox, Maria Gehne, Juliana Dias, Zachary Lawrence, Amy Solomon GMU: V. Krishnamurthy, Eunkyo Seo, Cristiana Stan

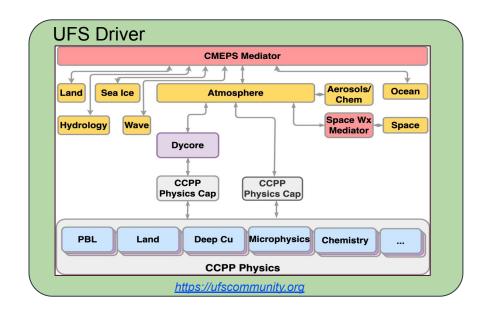
Coupled Model Component Development

Current State of NCEP Production Suite

- NCEP operates more than 38 distinct modeling systems to meet the stakeholder requirements
- Quilt of Models developed to meet the service needs over a long period of time
- Simplification of NCEP Production Suite is critical to reduce redundancy and improve efficiency

NATIONAL WEATHER SERVICE

ž


ॵ

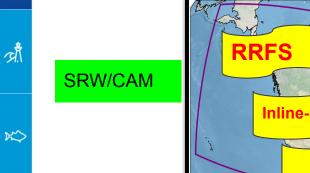
ž

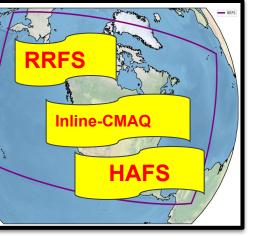
- K>
- 明

12

NOAA is collaborating with the US weather and climate science community to develop the next generation fully coupled earth system modeling capability for both research and operational forecast applications across different temporal and spatial scales.

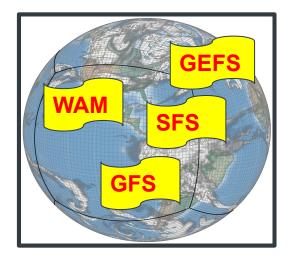
CMEPS mediator


- FV3 dycore
- CCPP physics
- MOM6 ocean
- o Noah-MP LSM


• WAVEWATCH III wave

- CICE6 sea-ice
- GOCART aerosols
- CMAQ air quality

NATIONAL WEATHER SERVICE


UFS Applications:

Regional:

- HAFS Hurricane Analysis and Forecast System (parent 4km; nest 2km)
- **RRFS** North America Rapid Refresh Forecast System (3km)
- **Online-CMAQ North American Air Quality Model (12km)**

MRW/S2S

Global:

- **GFS** Medium-Range Deterministic Weather Forecast Model (9km)
- **GEFS-** Global Ensemble Sub-Seasonal Forecast System (25km)
- **SFS** Seasonal Forecast System (??)
- WAM Whole Atmospheric Model (up to 500 km; 50km)

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 6

 \square

明

ž

On Physics Development for UFS Applications:

- Develop and improve physics parameterizations for UFS applications to reduce model systematic biases, *improve forecast of extreme weather and climate events*, and maximize model prediction skills.
- Unify physics parameterizations for all applications across different spatial and temporal scales to speed up the R2O transition of physics innovations and to reduce the cost of operational systems maintenance.

ž

औ

K

四日

 \square

Physics Parameterizations in Major UFS Applications

ي ک ک		GFSv17 (13km) & GEFSv13 (25km)	RRFSv1 (3-km) (multi-physics ensemble)	HAFSv1 (6/2 km)	AQMv7 (12km) aka Inline-CMAQ
औ	Deep Convection	sa-SAS	GF and sa-SAS	sa-SAS	sa-SAS
	Shallow Convection	sa-SAS	MYNN-EDMF	sa-SAS	sa-SAS
K\$	Microphysics	Thompson MP	Thompson MP & NSSL MP	A: GFDL MP B: Thompson MP	GFDL MP
	Radiation	RRTMG	RRTMG	RRTMG	RRTMG
哭	Surface Layer	GFS	MYNN & GFS	GFS	GFS
⊿	PBL	sa-TKE-EDMF	MYNN-EDMF & TKE-EDMF	sa-TKE-EDMF	sa-TKE-EDMF
	Land	NOAH-MP	RUC	NOAH LSM	NOAH LSM
気き	oro and non-oro GWD	uGWP v1	N/A	uGWP.v0 (oro)	uGWP.v0
	SS-GWD & TOFD	Yes	Yes	Yes	No

ķ	albedo/emi PBL: TKE-E	ng surface layer variables, ssivity :DMF ackground diffusivity, limit PBL	Land: Noah-MP Bug-fixes PBL: TKE-EDMF Microphysics: Thompson I Improve radiative fluxes a cover	
<i>उ</i> त्रै	Microphysics: GFDL MP Deep convection: saSAS Stricter trigger criteria, reduced entr. rate, reduced rain evap. rate Shallow convection: saMF Radiation:RRTMG		Deep convection: saSAS Prognostic closure Shallow convection: saMF Prognostic closure Radiation:RRTMG Couple convective cloud	Address excessive large net SW net to ocean at low sun angles Gravity wave drag: uGWDv1
*	MERRA2 ac Gravity wav	e drag: uGWDv0	Gravity wave drag: uGWD A C384) HR1 (C768)	
野	Land: Noah PBL: TKE-EDMF Microphysics: GFDL MP Deep convection: saSAS Shallow convection: saMF	climatology up land IC's PBL: TKE-E	CICE albedo in atm, new ice , VIIRS based land/lake mask, spun s. DMF	Land: Noah-MP Bug-fixes PBL: TKE-EDMF wind shear effect and TKE dependent entrainment.
⊿	Radiation: RRTMG Gravity wave drag: uGWD GFS.v16 Physics Packag	S.v16 Physics Package Microphysics: Thompson MP + S.v16 Physics Package Semi-Lagrangian Sedimentation + refined ice microphysics Deep convection: saSAS		CONUS CAPE enhancement Microphysics: Thompson MP Reduce stratus and downwelling rad. fluxes Deep convection: saSAS wind shear effect and TKE
	UFSR2O physics/dyna development coordinat Fanglin Yang, Lisa Ben	mics Shallow con ion Positive def Radiation:RI	omata convective org scheme. finite mass flux scheme vection: saMF finite mass flux scheme RTMG e drag: uGWDv0	dependent entrainment Shallow convection: saMF Radiation:RRTMG Gravity wave drag: uGWDv0

Acknowledgement to ALL UFS coupled/infrastructure/physics/dynamics/DA developers, application/project leads , and evaluators!

औ

K

四日

 \square

12

Introduced

- a two-moment cloud microphysics scheme (GFDL MP --> Thompson MP)
 - Improved the cloud radiation interaction capabilities
 - \circ \qquad Introduce Semi-Lagrangian Sedimentation for improved stability and cost
 - a new land model (NOAH LSM --> NOAH-MP LSM)
- new small-scale gravity wave and turbulent orographic form drag parameterizations
- a new parameterization for convective organization, and a new Prognostic-Stochastic and Scale-Adaptive
 Cumulus Convection Closure
- **new stochastic physics** in the ocean, land-surface and the atmosphere
- a **new positive definite tracer advection (TVD)** scheme in convection and PBL
- new capability for **coupling between aerosols and physics**
- new land/ocean/lake masks, new ice climatology, and surface composites over fractional grid

Improved

- cumulus convection schemes and boundary layer schemes to address model systematic biases
- gravity wave drags and mountain blocking
- coupling of the land model and surface layer schemes.

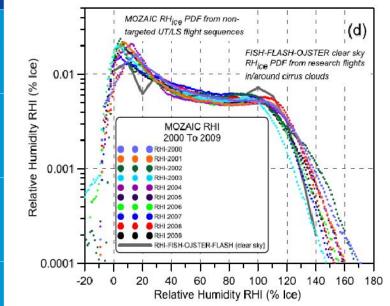
Items highlighted in blue color had also been included in HAFS.v1

NATIONAL WEATHER SERVICE

Example: Updating Thompson Microphysics For Global Applications

- In current NCEP operation, GFS &GEFS ==> GFDL MP; RAP & HRRR ==> Thompson MP; NAM ==> Ferrier-Aligo MP. FA was also used by HWRF before HAFS implementation.
- In 2020 after GFSv16 was finalized for operation, a decision was collectively made by EMC and the UFS Physics WG to **adopt Thompson MP for all UFS-based applications** (except for HAFS-B).
- Thompson MP has been widely used in the WRF community for regional model applications. Adapting it for NCEP global model applications has proved to be challenging.
- Significant efforts have been made 1) to eliminate computational instability of Thompson MP in global models which have larger physics time steps than regional high-res models.
 Subcycling microphysics and semi-Lagrangian sedimentation for rain and graupel were both developed to maintain computational instability; 2) to improve simulation of ice clouds in the tropics to achieve better radiation and energy balances.

ž


औ

KS

DOD

 Λ

Supersaturation and Supercooled cloud water

RH-ice (relative frequency) 0.10000 WRF results GFS results ERA5 results V FV3 results × RRFS results 0.01000 UFS W/ Frequency Thompson MP 0.00100 **Relative** GFS.v16 W/ 0.00010 GFDL MP 0.00001 0.00 0.20 0.40 0.60 0.80 1 00 1 20 1.40 1 60 Relative Humidity (w.r.t. ice) RHI

Observed frequency distribution (PDF) of RH relative to ice (RHI) from MOZAIC flight-level obs. RHI PDF from various models (Credit: Greg Thompson). Supercooled cloud water is a hazard to aviation !

NATIONAL WEATHER SERVICE

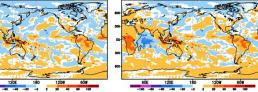
Building a Weather-Ready Nation // 12

12

ž

औ

K


000

Microphysics Hydrometers and TOA Energy Balance

Integrated hydrometeors (global, tropical:30S-30N)

	g/m2	GFSv16 GFDL MP	GFSv17 Prototype Thompson MP	IFS
	Cloud liquid	(77.6, 57)	(54,45.14)	(54.6, 50.13)
>	Cloud ice	(35.47, 23.82)	(8.67,12.32)	(20.17 ,15.14)
	Snow	(17.57,13.75)	(54.3,40.97)	(49.63,43.14)
	Ice + snow	(53.04,37.57)	(62.97,53.29)	(69.8,58.28)
	Ice + snow + cloud liquid	(130.64, 94.57)	(117.42,98.43)	(124.4,108.41)

p8bsup10 (1.094,2.157) p8bsup15-CERES (2.767,4.144

8bctl-CERES (5.351,7.503) 5th d

UFS p8b experiment: OLR varies with RHic for supersaturation

UL: CERES obs UR: RHi=125% (default) LR: RHi=115% (final for GFSv17) LL: RHi=110%

Building a Weather-Ready Nation // 13

These difference in hydrometer loadings affect radiative heating and energy balances

NATIONAL WEATHER SERVICE

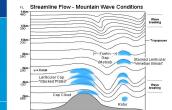
ž

A

R

DOD

12

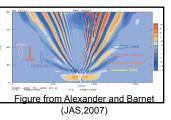

औ

K

四

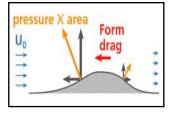
 \square

Unified Gravity-Wave Drag Parameterization



Large-Scale

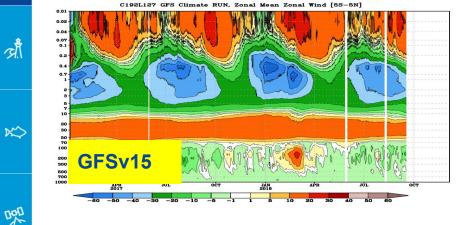
Orographic GWD


Low-level flow blocking

Non-stationary GWD

Small-scale GWD

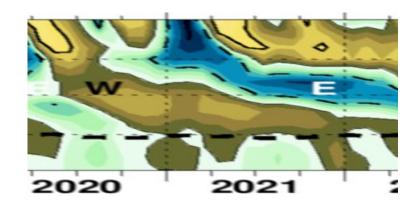
Turbulent orographic form drag

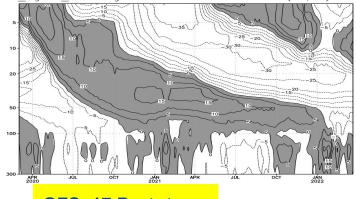

uGWD.v0 in current ncep operation: Kim & Arakawa (1995) O-GWD & Block, Yudin et al (2020) N-GWD

Different scaling factors need to be tuned and applied for different model grid resolution. **uGWDv1 (aka the GSL suite) for the UFS**: Kim and Doyle (2005) O-GWD & Block Yudin et al (2021) N-GWD Tsiringakis et al. (2017) SS-GWD, Beljaars et al. (2004) TOFD

O-GWD & Block have been optimized to match COORDE intercomparison benchmark. Source functions for triggering N-GWD still need to be set differently for models with different resolutions

Improved forecasts of the QBO with improved GWD parameterizations ž

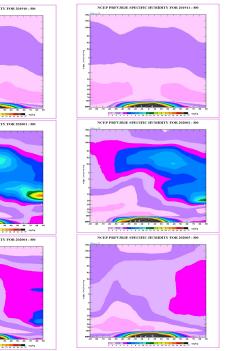

औ


55-5N1 UGWD

NATIONAL WEATHER SERVICE

50 70 100 200 300 500 700 GFSv16

c384_ugwv1_1.0nf ugwv1 zonal mean zonal wind(5S,5N) average


GFSv17 Prototype Landing a meanier-Ready Nation // 15

 \square

Improving Water Vapor in the Stratosphere

NCEP PREVARME SPECIFIC HUMIDITY FOR 201909 NCEP PRFV3R3E SPECIFIC HUMIDITY FOR 201910 : # 09/2019 NCEP PREVARAE SPECIFIC HUMIDITY FOR 202001 : # 12/2019 SCEP PREVARAE SPECIFIC HUMIDITY FOR 202003 - 00 NCEP PRFV3RJE SPECIFIC HUMIDITY FOR 202004 : @ 03/2020

Compared to GFSv15, GFSv16 Captured well water vapor seasonal cycle in the stratosphere verified against UARS HALOE observations (no shown), attributed primarily to a higher model top and new Parameterization of middle atmospheric water vapor photochemistry (McCormack et al. 2008).

The same verification will be done for GFSv17

ž

औ

R

DOD

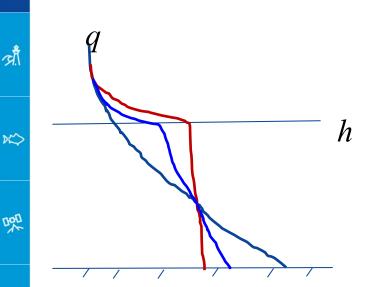
12

Improving CAPE for GFS.v17 Addressing Forecasters' Concerns

ž

CAPE (J/kg) Valid: 00Z 24 JUL 2020 CAPEsfc (J/kg): HR1 CTL CAPEsfc (J/kg): CTL (GFSv16.3.4) CAPEsfc (J/kg): RAPanl FH24 ICs: 00Z 23Jul2020 FH24 ICs: 00Z 23Jul2020 FH00 ICs: 00Z 24Jul2020 50N 40N 30N -120W 110W 90w 110W 110W 100W 80W 7ÓW 100W 90W 80W 7ÓW 100W 90W 80W 50 100 150 200 250 500 750 1000 1500 2000 2500 3000 3500 4000 4500 5000 100 150 200 250 500 750 1000 1500 2000 2500 3000 3500 4000 4500 5000 100 150 200 250 500 750 1000 1500 2000 2500 3000 3500 4000 4500 5000 **GFSv17** atmos-only **GFS.v16** RAP ANL

12


GFSv17 is less than Ops GFS.v16, and both are much less than RAP analysis

NATIONAL WEATHER SERVICE

Prototype

Building a Weather-Ready Nation // 17

7ÓW

ž

 \square

512

Dark Blue: no non-local mixing Red: a full non-local mixing Blue: reduced non-local mixing by enhanced entrainment rate

Sensitivity of CAPE to entrainment enhancement in TKE-EDMF PBL scheme

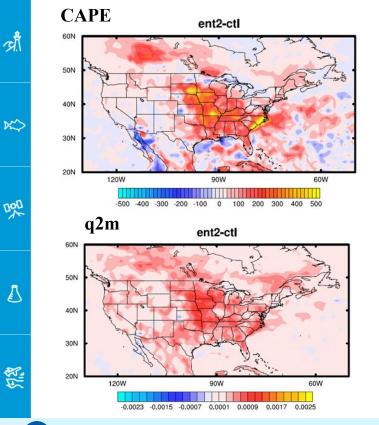
- Increase entrainment rate in updraft to reduce PBL mixing $(1.3 c_{\mathcal{E}} \rightarrow 2.0 c_{\mathcal{E}})$
- Further adjust entrainment rate in updraft as a function of vegetation fraction (σ_f) and surface roughness length (z_0)

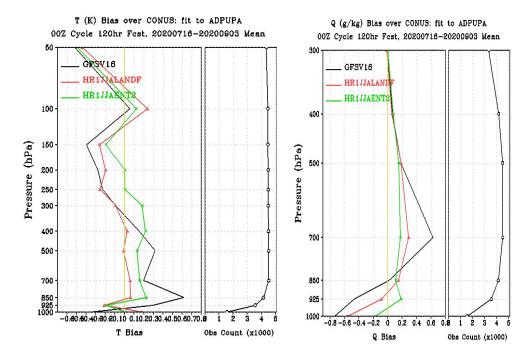
$$\varepsilon_{u} = c_{\varepsilon} \left[\frac{1}{z + \Delta z} + \frac{1}{(h - z) + \Delta z} \right]$$

$$f_1 = \frac{\sigma_f - 0.1}{0.9}, \quad f_2 = \frac{z_0 - 0.1}{0.9}$$

 $c_{\varepsilon}' = \left(1 + \sqrt{\min(\max(f_1, 0), 1)}\right) \left(1 + \min(\max(f_2, 0), 1)\right) c_{\varepsilon}$

औ


四

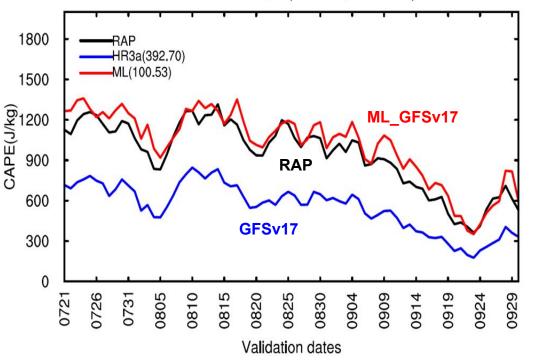

 \square

Improved CAPE and Q2m

5-Day Fcst 20200716-20200830

Improved T and Q profiles over CONUS

HR1JJALANDF: Control HR1JJAENT2: increased entrainment rate


NATIONAL WEATHER SERVICE

Use Machine Learning (Unet) to Predict/Correct GFSv17 CAPE fhr=24, 20200720-20200930

- Training data: CAPE + land sea mask from GFSv16 forecast at F024
- Ground truth: CAPE from RAP
- For each date only 00Z is used (no RAP f00 data for other initial time)
- Training parameters
 - training data:
 20210323-20230323 (730 samples shuffled, 90% training 10% validation)
 - \circ epochs=50
 - learning rate= 0.001
 - batch size=32
 - (Hera) CPUtime: ~26 mins/epoch
 - (Hera) GPU time:
 - ~0.4mins/epoch

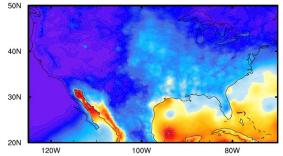
NATIONAL WEATHER SERVICE

CAPE fhr=24 ave(20-50N,70-125W)

Building a Weather-Ready Nation // 20

 \square

四


ž

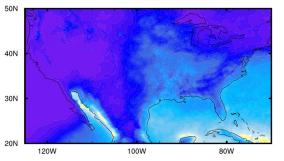
औ

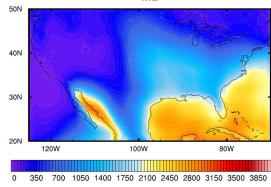
K

CAPE fhr=24 ave(IC=20200720-20200930)

RAP

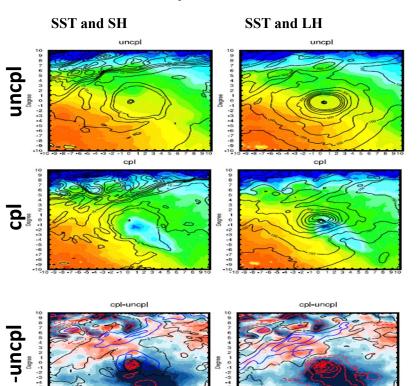
ž

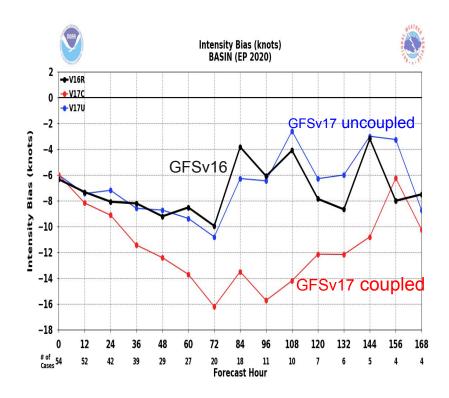

. जौ


 κ

哭

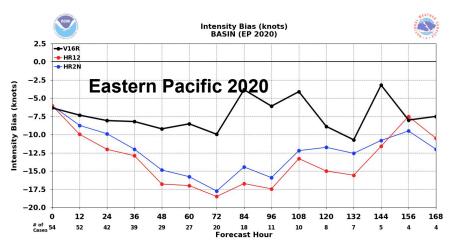
 \square

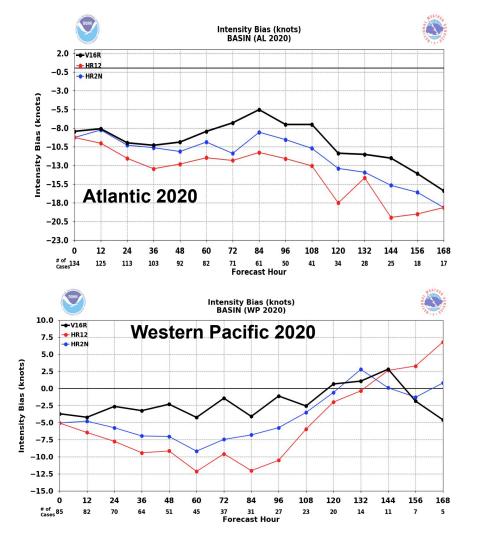

12


ML

Weakening Hurricane Intensity in Coupled Model (GFSv17, 13-km)

b


Hurricane Teddy, IC 20200913, 132h Fcst 2020 Hurricane Season (Eastern Pacific)



Reduced hurricane intensity biases in coupled GFSv17 by

- introducing environmental wind shear effect on convective updraft and downdraft and TKE-dependent entrainment enhancement
- Update Wave-Atmosphere interaction (ongoing)

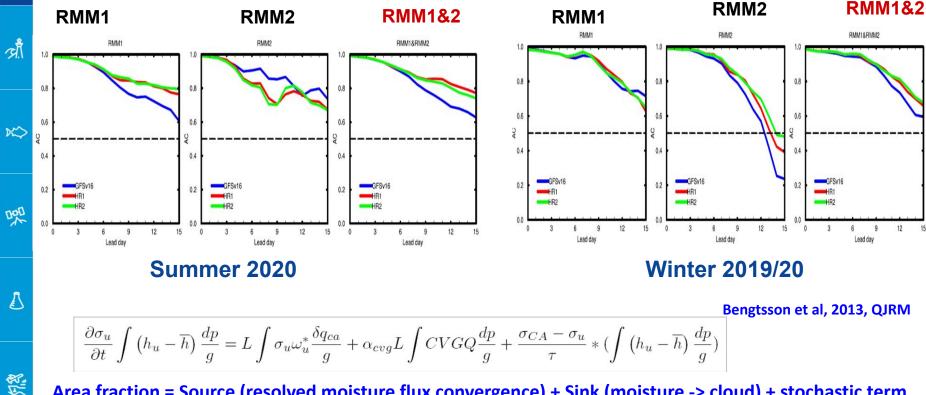
V16R--GFSv16; HR12—HR1 coupled; HR2N—HR2 coupled

.जौ

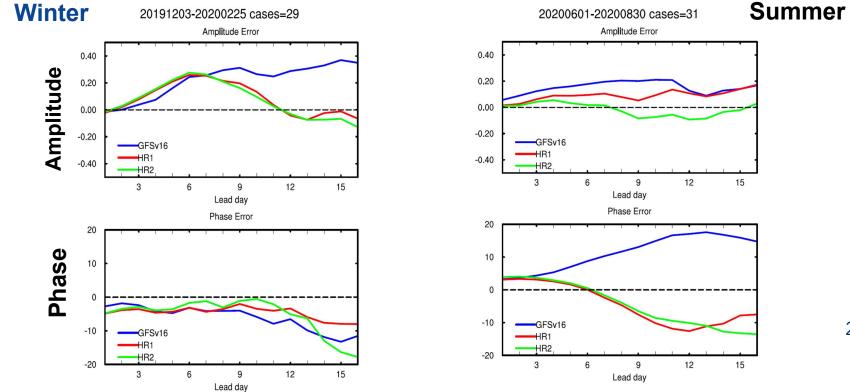
K

明

 \square


212

Improving MJO and Monsoon Forecast in Fully Coupled GFSv17 Prototypes


Improving MJO

Area fraction = Source (resolved moisture flux convergence) + Sink (moisture -> cloud) + stochastic term

NATIONAL WEATHER SERVICE

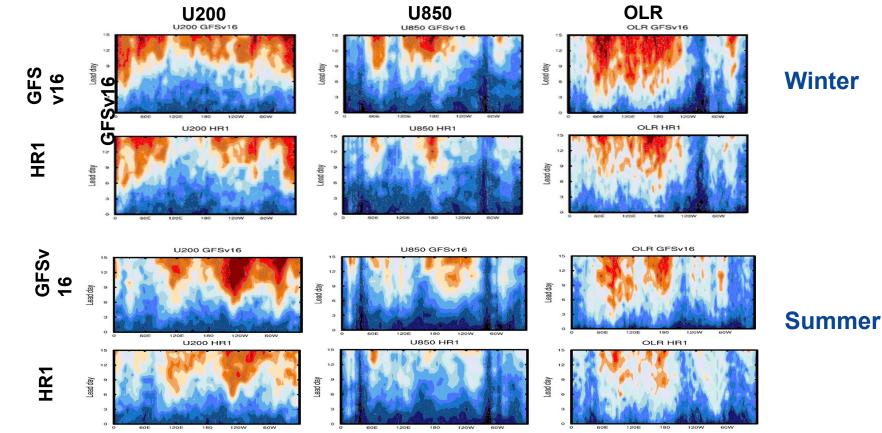
Bias

NATIONAL WEATHER SERVICE

ž

.

K\$


四

 \square

515

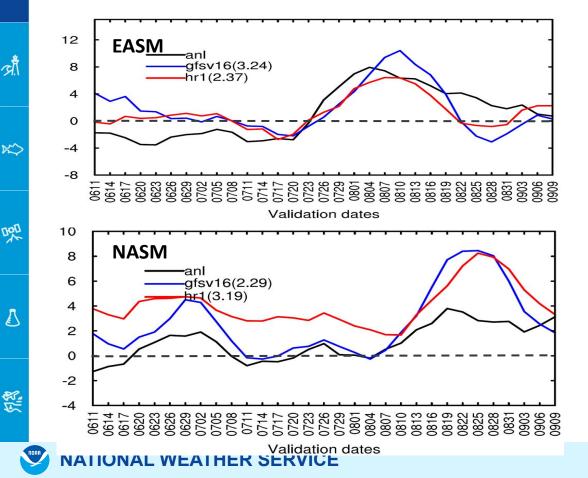
NORR

Improved MJO Through Reduced Component RMSE

Building a Weather-Ready Nation // 27

NATIONAL WEATHER SERVICE

12


四

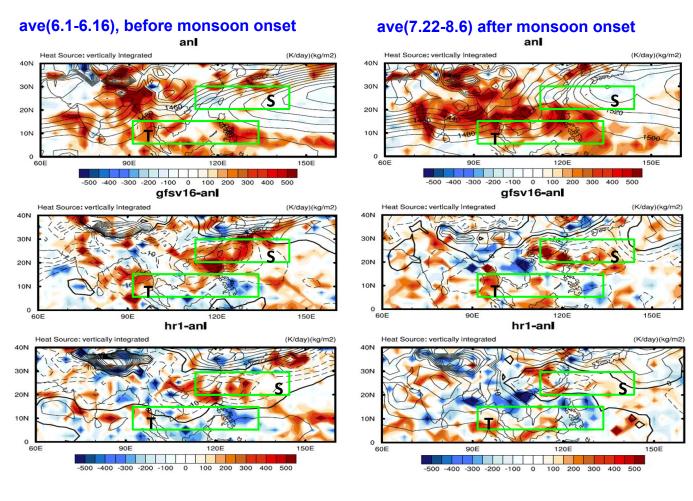
ž

<u>ज़ौँ</u>

 κ

Evolution of monsoon index (lead day=10)

ž


- EASM: Strong/weak biasbefore/after monsoon onset inthe model except peak time inGFSv16
- NASM: Strong bias in the model, especially in HR1
 - EASM index= U850(5-15N, 90-130E)-U850(20-30N, 110-140E)

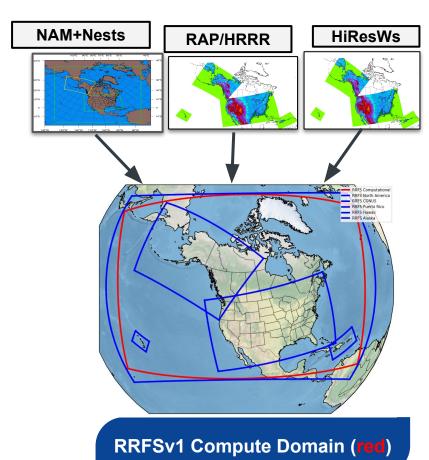
- CPC monsoon indices:

https://www.cpc.ncep.noaa.gov/product2&i lobal_Monsoons/Asian_Monsoons/Figures /Index/

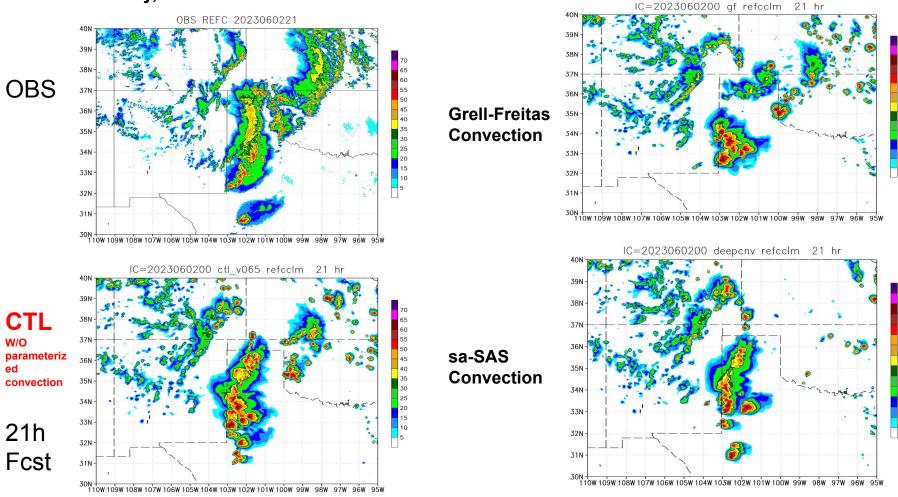
 NASM index= U850(5-15N, 130-100W)-U850(20-30N, 110-80W)

[Q1]&Z850: EASM (lead day=10)

- Warm [Q1] bias associated with low Z850 bias
- Opposite [Q1] meridional biases gradient before and after monsoon onset in tropical region
- Less [Q1] bias in HR1 (eg GFSv17) over subtropical and tropical definition regions

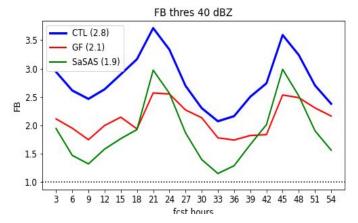

$$\begin{split} Q_1 &= c_p \frac{\partial T}{\partial t} - c_p (\omega \sigma - \mathbf{V} \cdot \nabla T), \\ Q_2 &= -L \frac{\partial q}{\partial t} - L \mathbf{V} \cdot \nabla q - L \omega \frac{\partial q}{\partial p}, \end{split}$$

[Q1]=[Qr]+LP+SH [Q2]=L(P-E) -Yanai etal. (1973, 1998) -https://www.ncl.ucar.edu/Applications/Sc ripts/Q1Q2_yanai_1.ncl 29

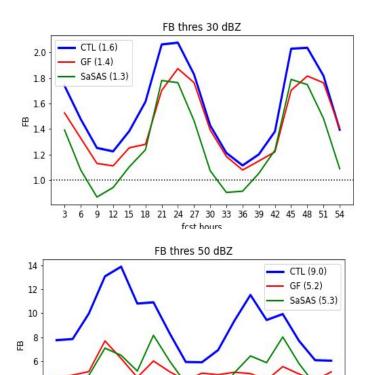

RRFS, 3km resolution

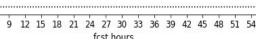
Overprediction of heavy precipitation and radar reflectivity in the regional Rapid Refresh Forecast System in weekly forced convective environment

Sensitivity to parameterized deep convection



Radar Reflectivity, 2023060221




Reduced reflectivity bias with parameterized Deep Convection

- 28 Cases from 2023051100 to 2023061100; 00Z only
- ICs: From RRFS real-time parallel DA

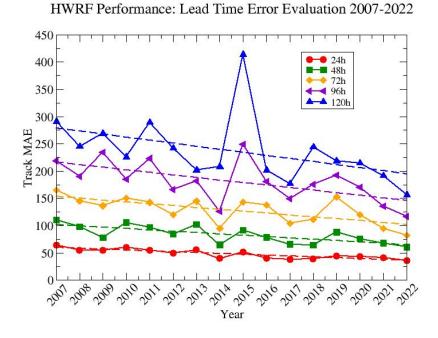
3 6

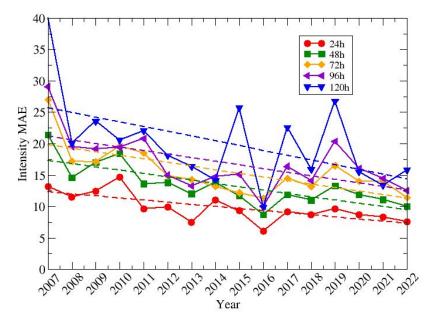
On NOAA's legacy operational hurricane prediction system (HWsRF/HMON) and the new UFS-based Hurricane Analysis and Forecast System (HAFS)

Slides on hurricanes were provided by Zhan Zhang

NATIONAL WEATHER SERVICE

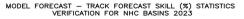
Legacy Operational Tropical Cyclone Prediction Models at NCEP


	HWRF	HMON	Elsa051.2021070212 - 900hour
Dynamic core	Non-hydrostatic, NMM-E	Non-hydrostatic, NMM-B	20 -28 -26
Nesting	13.5/4.5/1.5 km; 77°/18°/6°; 75 vertical levels; Full two-way moving	18/6/2 km; 75°/12°/8°; 71 vertical levels; Full two-way moving	Mar. 32 Mar1 Artor Mar. Mar. 20 Mar. Mar. 20 Mar. Mar. 20 Mar1 M
DA and Initialization	Vortex initialization, Self-cycled hybrid EnKF-GSI with inner-core DA (TDR)	Modified vortex initialization, no DA	
Physics	Updated surface (GFDL), GFS-EDMF PBL, Updated Scale-aware SAS, NOAH LSM, Modified RRTM, F-A MP	Surface (GFDL), GFS-EDMF PBL, Scale-aware SAS, NOAH LSM, RRTM, F-A MP	Elsa051.2021070212 - 000hour Pada5000 Velsa 500 - 100
Coupling	MPIPOM for NHC AOR; HYCOM JTWC; RTOFS, WaveWatch-III	HYCOM, RTOFS, No waves	-28 -20 -26 -26 -26
Post-processing	NHC interpolation method, Updated GFDL tracker	NHC interpolation method, GFDL tracker	Wincold Internet -5
Operational forecasts	All global basins (NHC/JTWC), max. 7 TCs on-demand	NHC basins, max. 5 TCs, on-demand	
Computation Resources	91 nodes in 98 mins	43 nodes in 100 mins	Note: Items in Greer similar/same; Items different

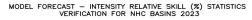

HWRF

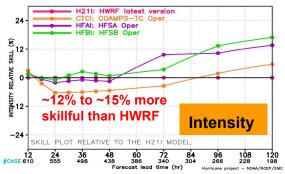
Green are tems in Red are amerent

HWRF Track/Intensity Forecast Error Trend



HWRF Performance: Lead Time Evaluation 2007-2022




Operational HAFSv1 (Hurricane Analysis and Forecast System)

- HAFSv1, first major UFS-based hurricane application, was implemented on June 27, 2023
- Successful community modeling approach for accelerated transition of research to operations
 - Cloud-allowing high resolution moving nest
 - Formal vortex initialization and GSI-based data assimilation
 - TC-specific physics
 - Two-way coupled to Ocean models in all global basins
 - One-way coupled to Wave model (WW3) in NHC basins
 - Inner-core DA including real-time data from recon missions

. जौ

K)

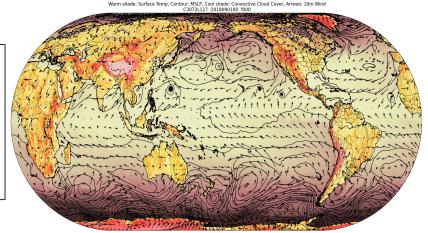
13

Thoughts on Physics Unification -- Opportunities and Challenges

- Efforts have been made in the past few years in the UFS and UFS-R2O community to develop scale adaptive physics parameterizations that can be used in UFS applications across different spatial and temporal resolutions, but challenge remains.
- Schemes that have been traditionally developed for global models at ~10-km and coarser resolution do not work well out of the box for regional high-resolution models. Likewise, schemes used by regional high-resolution models do not always work well in global models.
- To achieve unification, physics parameterizations that have strong dependence on model grid size need to be evaluated in both UFS global and regional applications.
- Schemes like microphysics, convection, PBL, and GWD needs further development to become truly scale aware

A fully coupled UFS serves as a foundation for future operational global forecast systems at NOAA/NWS/NCEP ranging from weather to subseasonal to seasonal scales.

ž


औ

KS

哭

 \mathbb{A}

12

UFS Earth System Model Components:

- FV3 (Atmosphere)
- MOM6 (Ocean)
- CICE6 (Sea Ice)
- WW3 (Waves)
- NOAH-MP (Land)
- GOCART (Aerosols)

MRW/S2S: Building a Six-Way Global Coupled Unified Forecast System For future GFS, GEFS and SFS

NATIONAL WEATHER SERVICE