

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

A parameterization for cloud organization and propagation by evaporation-driven cold pool edges

Saulo R. Freitas with contributions: G. A. Grell, A. Chovert, M.A. Silva Dias, E. Nascimento

saulo.freitas@inpe.br

Contents

- Some examples of the phenomena we want to improve its representation in the context of low-resolution (non-convection-allowing/resolving) GRCMs
- Motivation
- CRM simulations to help the parameterization design
- The proposed parameterization
- Applications
- Summary and ways to move forward

Squall lines and associated cold pools over Amazonia

Squall lines over Amazonia and associated lightning flashes

03 Jun 2024 16:01 NOAA/NESDIS/STAR GOES-East GLM FED over ABI 16:00 Geocolc

Geostationary Lightning Mapper - Lightning flash extent over GeoColor - 03 Jun 2024 - 1601 UTC

Cold pools over the central part of Brazil

26 Mar 2023 10:20Z - NOAA/NESDIS/STAR - GOES-East - GEOCOLOR Composite - NSA

Cold pools over the central part of Brazil

A miscellanea of organized convective systems in the Amazon basin on an ordinary day

Aqua/MODIS true-color images (doi:10.5067/MODIS/MYD02HKM.061)

Oceanic cold pools

A) During the initial deep convection development, the sub-cloud layer is cooled and moistened by the evaporation of rainfall.

- B) In the mature phase, downdrafts introduce cold, dry air into the boundary layer, and push away the moist band forming the gust fronts.
- C) The edges of the cold pools contain high moist static energy (MSE) and strong mass convergence, which are prone to the development of new convective cells.

Genesis and evolution of a cold pool gust-front

https://www.britannica.com/science/thunderstorm/Thunderstorm-electrification

Some motivation

Including representation of cold-pool processes in a convection parameterization for weather and climate GCMs

- might be useful by introducing spatial-temporal correlations between convective events (memory).
- might help the diurnal cycle of precipitation.
- might help cloud organization (clustering, lifetime, and propagation) in a GCM.
- should improve the SGS emission estimation of sea salt, dust aerosols.

...

2 - Cloud-resolving modeling to support the parameterization design.

Cloud-resolving simulations over the Amazon Basin

BRAMS model	Freitas et al. (GMD 2017)	
Spatial resolution	 Horizontal: 250 m x 250 m covering 500 x 500 km² over the Amazon basin Vertical: 50 m - 500 m, top at 20km 	And
Dynamic core	Non-hydrostatic, Boussinesq compressible (Cotton et al., 2001)	
Time integration	Runge-Kutta 3 rd order, 3 rd and 5 th order advection operators (Wicker and Skamarock, 2002)	あたいがある
Isotropic turbulence	Smagorinsky 1963, Hill 1974 and Lilly 1962	
Monotonic advection for scalars	Freitas et al. (2011)	
Cloud microphysics	hybrid single and double moment (Thompson and Eidhammer, 2014)	
Radiation	RRTMG (short- and long-wave)	
Surface scheme	LEAF-3 (Walko et al., 2000)	-

MODIS visible image 1:30 PM MAY 2017 Simulation day

Cloud-resolving simulations over the Amazon Basin

21 MAY 2017 - 13:00 to 20:00 UTC

Cloud-resolving simulations over the Amazon Basin

Vertical velocity at ~ 400 m AGL and near surface MSE

Discriminating regions at the edges and inside the cold pools

1) if W > 0.1 m/s + subsequent 30mn precipitation is > 4 mm => region of positive MSE anomalies (moist rings)

2) if W < -0.1 m/s + previous 30mn precipitation is > 4 mm => region of negative MSE anomalies or the cold pool region.

PDFs for the MSE anomalies: Red : just outside the cold pools Blue: in the cold pools itself

Region	Mean (kJ kg ⁻¹)	STD (kJ kg ⁻¹)
outer	2.0	2.8
inner	-2.1	3.0

Statistical indicators of the MSE anomalies PDF

3 - A proposed parameterization.

A parameterization to account for the effects of the cold pool edges

Definition of Buoyancy-Excess (β_{χ})

as a measure of the sub-grid scale MSE variability due the presence of the cold pools:

$$\beta_x = -(H_d - \widetilde{H})$$

a) H_d and \tilde{H} are the downdraft and environment MSE.

b) β_x is 3-d positive-definite prognostic scalar.

a) Definition of the mean cloud layer horizontal speed $(u, v)_{mcl}$:

$$(u,v)_{mcl} = \frac{1}{p_2 - p_1} \int_{p_1}^{p_2} (u,v)_{env} dp$$

where $p_1 = 900$ hPa, $p_2 = 600$ hPa. $(u, v)_{env}$ is the horizontal environment wind and p is the atmospheric pressure.

b) Following the literature as discussed before: The gust front horizontal velocity is given by:

$$V_{gf} = \kappa \left(\int_0^D \frac{1}{1+\gamma} \frac{\beta_x}{c_p \tilde{T}} g dz \right)^{1/2}$$

The 2-d horizontal propagation velocity of the cold pool:

$$(u, v)_{\text{prop}} = (u, v)_{mcl} + \frac{V_{gf}}{|(u, v)_{mcl}|} (u, v)_{mcl} + 0.6(u, v)_{env}$$

The maximum vertical velocity at the leading edge of the cold pool:

$$w_{gf} = \kappa \left(\int_0^D \frac{1}{1+\gamma} \frac{\beta_x}{c_p \tilde{T}} \sin^2 \alpha \ g \ dz \right)^{1/2}$$

GOVERNO FEDERAL

A parameterization to account for the effects of the cold pool edges (cont.)

The proposed prognostic equation for the Buoyancy-Excess (β_x):

UNIÃO E RECONSTRUÇÃO

Application within the Grell-Freitas (GF) Convection Parameterization

1st Effect: as a boundary condition for the MSE of the updraft in the propagation direction, serving as an additional source of buoyancy for the convecting air parcels:

Closure (stability removal with non-equilibrium hypothesis): ma

mass flux $\propto \frac{A}{\tau}$

a) Determination of the cloud work function and total water of the updraft :

b) Determination of the convective adjustment time scale:

GF solves a diagnostic equation for the sub-grid scale updraft vertical velocity (w_u)

$$\tau = \int_{z_b}^{z_t} \frac{dz}{w_u(z)} \quad \text{with} \quad w_u(z_b) = w_{gf}$$

- Makes the time scale of the updrafts overturning shorter.
- Implies on stronger convection (larger updraft mass flux at the cloud base).

2nd Effect: optional trigger function based on the kinetic energy $(E_k = \frac{1}{2}W_{gf}^2)$ of the air parcels at the leading edge of the gust front. In this case, deep convection is allowed in a model column if

 $E_k > |min(A_{cin}, 0)|$

Results using BRAMS model

Amazon Basin - model grid spacing ~ 8km - 20UTC 16Feb 2014

Results with BRAMS @ 8km

Example of Impact on organization and propagation

GoAmazon simulations with the BRAMS model

BRAMS model	Freitas et al. (GMD 2017)
Spatial resolution	 Horizontal: 8 km x 8 km covering 2800 x 2200 km² over the Amazon basin Vertical: 90 m - 750 m, top at 20km
Dynamic core	Non-hydrostatic, Boussinesq compressible (Cotton et al., 2001)
Time integration	Runge-Kutta 3 rd order, 3 rd and 5 th order advection operators (Wicker and Skamarock, 2002)
PBL Parameterization	M&Y 2.5 (Mellor & Yamada 1982)
Monotonic advection for scalars	Freitas et al. (2011)
Cloud microphysics	WSM 5-class single moment (Hong et al. 2004)
Convection Parameterization	Grell and Freitas (2014); Freitas et al. (2018, 2021, 2024)
Radiation	RRTMG (short- and long-wave, Iacono et al. 2000)
Surface scheme	JULES (Moreira et al. 2013)

Initial and boundary conditions, and strategies

- ERA-5 Reanalysis (0.25 x 0.25 degree) 3hourly
- U, V, T, Rv, geopotential height, soil moisture and soil temperature
- Lateral and top nudging: Newtonian relaxation
- 10 days with 48 hours forecast (free runs, forecast mode)
- Results analyzed using only the 2nd forecast day (1st fcst day is discarded)

Model Domain

Experiments GoAmazon

- IOP1_1: 15-24 Feb 2014 wet season
- IOP2_1: 01-10 SEP 2014 dry season
- IOP2_4: 01-10 Oct 2014 transition
- Total analyzed days: 30

Effects on the Mean Precipitation – Transition to dry-to-wet season

Impacts on Storm's Propagation

MONAN Model for Ocean-laNd-Atmosphere predictioN

Effects on the Intensity of the Storms

4 - Mesoscale Convective Systems Case Studies.

Mesoscale Convective Systems Case Studies

Region	Time of start - Integration length	Model grid spacing
Amazon Basin	12UTC 04 OCT 2020 48 hours	H: 8 km x 8 km V: 90 m – 750m
Equatorial Africa	00UTC 06 AUG 2016 48 hours	H: 12 km x 12 km V: 90 m – 750 m
CONUS	12UTC 02 OCT 2014 48 hours	H: 12 km x 12 km V: 70 m – 750m
Rio de la Plata Basin	12UTC 15 FEB 2023 48 hours	H: 10 km x 10 km V: 90 m – 600m

"1,200-Mile-Long Line of Storms Batters Central U.S. on Thursday Night"

02-03 October 2014

https://thevane.gawker.com/1-200-mile-long-line-of-storms-batters-central-u-s-on-1641956485

MCS over the CONUS

2-h Accumulated Precipitation (mm h⁻¹)

MCS over Western Africa

MCS over Western Africa

2-h Accumulated Precipitation (mm h⁻¹)

Four MCS Case Studies

$\begin{array}{c} \text{2-h Accumulated Precipitation} \\ (mm \ h^{\text{-1}}) \end{array}$

Global scale simulations with the MPAS/MONAN model

MPAS model

Spatial resolution	 Horizontal: various (240 to 15km) Vertical: 55 levels, top at ~ 35 km
Dynamic core/ time integration/ advection	 Fully-compressible, non-hydrostatic dynamics Split-explicit Runge-Kutta time integration Exact conservation of dry-air mass and scalar mass Positive-definite and monotonic transport options
PBL Parameterization	MYNN
Cloud microphysics	WSM 6-class single moment (Hong et al. 2004)
Cloud fraction	Chaboureau and Bechtold (2002)
Radiation	RRTMG (short- and long-wave, Iacono et al. 2000)
Surface scheme	NOAH
Convection Parameterization	 Updated GF scheme (Grell and Freitas , 2014; Freitas et al. 2018, 2021, 2024) Deep and shallow modes

Initial condition and strategies

- GFS (0.25 x 0.25 degree)
- U, V, T, Rv, geopotential height, soil moisture and soil temperature, SST
- 10 days (free runs, forecast mode)

Helps organization in low resolution GCM configuration

30 km

15 km

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Cold Pool

Helps organization in low resolution GCM configuration

rediction Across Scales

MINISTÉRIO DA

E INOVAÇÃO

CIÊNCIA, TECNOLOGIA

Tropical Cyclone Lincoln – Australia Feb 2024

0 5 10 20 30 50 100 150 200 250 [mm]

Impact on the diurnal cycle of the precipitation

MPAS

Model for Prediction Across Scales

MONAN

Model for Ocean-laNd-Atmosphere predictioN

GFS TP GPM_IMERG TP ERA5 TP MONAN TP MONAN CP MONAN MP

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA

Summary and Plans for the Future

- A parameterization for interplays between cold pools, wind shear, and mesoscale convective systems for low-resolution GRCMs.
- The parameterization improves the organization, longevity, propagation, and severity simulation of MCS in the Amazon Basin and over a set of contrasting continental regions and environments.
- Room for additional features include:
 - Environmental entrainment rate response to cloud organization.
 - Playing a role in shaping the development of shallow and congestus plumes near the area enclosing the cold pool.
 - Direct interaction between the surface and the gust front.
 - The slope angle of the cold pool head could be based on the balance of low-level wind shear and gust front propagation speed (RKW theory).

Thanks for your attention! Questions?

This framework should work within different mass-flux convection schemes as well. Contact me if you have any interest in implementing it into your model: <u>saulo.freitas@inpe.br</u>

A cartoon showing the initiation of new convection due to the gust fronts associated with cold pools.

Tropical Cyclone Lincoln – Australia Feb 2024

Results using MPAS/MONAN model

CIÊNCIA, TECNOLOGIA

E INOVAÇÃO

GPM_IMERG

GPM_IMERG Domain ave/min/max: 0.29 0 33.9 mm/hour monan_g4_GPM_3IMERGHHL_06_precipitationCal

CONTROL

EQ

10S

20S

30S

50E

60E

EN62_DC0_CNV0_EDT30_x1.2621442

70E

TOT_Prec Domain ave/min/max: 0.27 0 39.3 mm/hour

80E

90E

100E

TOT Prec 22Z19FEB2024 22Z19FEB2024

COLD POOL

TOT_Prec Domain ave/min/max: 0.24 0 32.9 mm/hour EN62_DC1_CNV1M222CW2TR2MXB20_EDT30_x1.2621442

۱L

Ave Domain- Lon: -80,-50 Lat: -10,10 MR_DPSH_RH1_EN62_DC1_CNV0_EDT30_GFS_x1.655362

GPM_IMERG

GPM_IMERG Domain ave/min/max: 1.01 0 30.1 mm/hour monan_g4_GPM_3IMERGHHL_06_precipitationCal

Contraction of the second seco

CONTROL

TOT_Prec 21Z18FEB2024 21Z18FEB2024

10S

TOT_Prec Domain ave/min/max: 0.32 0 11.2 mm/hour EN62_DC0_CNV0_EDT30_x1.2621442

COLD POOL

TOT_Prec Domain ave/min/max: 0.75 0 19.0 mm/hour EN62_DC1_CNV1M222CW2TR2MXB20_EDT30_x1.2621442

monan_GLB_3B-HHR-L.MS.MRG.3IMERG.20240218_19

V

7ởw 6ởw 5ởw 4ởw 3ởw 7ởw 6ởw 5ởw 4ởw 3ởw GPM_IMERG Domain ave/min/max: 10.2 0 269. mm/hour TOT_Prec Domain ave/min/max: 6.24 0 143. mm/hour EN62_DC0_CNV0_EDT30_x1.2621442

7ÓW 6ÓW 5ÓW 4ÓW 3ÓW TOT_Prec Domain ave/min/max: 8.91 0 149. mm/hour EN62_DC1_CNV1M222CW2TR2MXB20_EDT30_x1.2621442

