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Asian summer monsoon deep convection
exports pollution to the global atmosphere
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Asian Summer Monsoon Chemical and
Climate Impact Project (ACCLIP)
Principal Investigators: Laura Pan (NCAR), Paul Newman (NASA)

Lead Co-Investigators: Elliot Atlas (Univ. Miami), William Randel (NCAR),
Troy Thornberry (NOAA), Brian Toon (CU)
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Primary Goal: To investigate the impacts of Asian gas and aerosol emissions on
global chemistry and climate via the linkage of Asian Summer Monsoon (ASM)
convection and associated large-scale dynamics

Scientific Objectives: Obtain a comprehensive suite of dynamical, chemical and microphysical
measurements in the region of ASM anticyclone to address:

1) the transport pathways (vertical range, intensity, and time-scale) of the ASM uplifted air from inside
of the anticyclone to the global upper troposphere and lower stratosphere (UTLS)

2) the chemical content of air processed in the ASM for UTLS ozone chemistry, and short-lived climate
forcers

3) the information on aerosol size, mass and chemical composition for determining the radiative impact
4) the water vapor distribution associated with the monsoon dynamical structure
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Asian Summer Monsoon Chemical and
Climate Impact Project (ACCLIP)
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n-field model forecasts do not represent the

argest pollution mixing ratios observed

CO (ppbv)

0 50 100 150 200 250 300 350
Carbon Monoxide [ppbv]

Figure courtesy of Pan et al. (2024)

o0 L 56

: _ 18 -

= 16 Y S,y e, e e o
15 o

14 - - .:.,

I T

i X 12 -
10 EPN

: < ACCLIP CO

: NCAR MUSICA
5| 6 - NASA GEOS

i N

0_.... -n--|-:uulu-..l....l....l...._ 0 50 100 150 200 250 300

350



GuIC

from

ing Question: What pathway(s) dic

air travel

ASM convection to ACCLIP sampli

NASA WB-57

— (Bowman, 1993) and analysis winds

3-hourly Satellite-derived
convective cloud tops
(Pfister et al., 2022)

% Backward-trajectories using TRAJ3D model V

https://doi.

Western'

g’

400 i
: 5
- ¥
o1
¢ o= ’
v
1000 0
N S F N CA R GV 120 125 130 135 140 145 150 155 160
I

This product is available in the
ACCLIP data archive to support
science applications!

org/10.26023/DP1P-C32K-YJO5

Dacific

X

e —



ERAS

Analysis winds used for trajectories give qualitatively
similar, but quantitatively different solutions
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There are two primary regions of
convective contribution to ACCLIP
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Aircraft Pressure (hPa)

Time since convection as a function of aircraft sampling altitude
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Above ~15km, time since convection
gradually increases by ~5 days / km
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Throughout the free troposphere, mean time
since convection is quasi-constant (~a week),
suggesting convection dominates in this layer
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Observed CO (ppbv)
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The unprecedented pollution mixing ratios are all
associated with very fresh convective outflow
CO is lost rapidly within the first few days, but follows
expected 60-day lifetime after ~ one week

Observed Prop-Eth (pptv)

nfluence is
INg

Ethane/propane ratio
vs time since convection

o
w
]

o
N
]

o
1

0.0 -

10 15 20 25 30

Time to convective influence (days)

Trajectory-based time since convection is generally
consistent with a hydrocarbon “clock” calculation
(propane-ethane ratio shown here)



August 6, 2022

August 7, 2022

Flights on Aug 6-7, 2022 sampled horizontal,
vertical and temporal gradients
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Fraction of aircraft's trajectories (%)
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Flights on Aug 6-7, 2022 sampled horizontal,

vertical and temporal gradients

Transit Time Distributions for Aug 6-7 2022
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CO was considerably elevated in the
“fresher” northeast Asia outflow
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The northeast Asia source was only
observed from 11-15 km aircraft
altitude. Above 15 km, sampling
was limited to more distant south

Asian outflow



For all ACCLIP sampling, high-altitude obs generally traveled
through the UTLS anticyclone to reach the sampling domain.
UT obs were often influenced recently by eastern Asia
convection carrying potent pollution

100

N
o
o

Pressure (hPa)
Altitude (km)

Y
o
o

60 80 100 120 140 160
Longitude (E)



Altitude [km]

The ASM lofts short-lived chlorine to the
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Take-home messages

* The 2022 ACCLIP campaign has provided a unique dataset to investigate the
role of the Asian monsoon in impacting global composition and climate

* Deep convective outflow from two monsoon sub-systems primarily
contributed to ACCLIP sampling
* The East Asian subtropical front — with enhanced pollution in “fresh” outflow
* The South Asian monsoon — which may initially reach higher altitude than the EASF

* The impact of ASM convection on UTLS composition may be
underestimated by satellite observations and coarse-grid global models

* Transport statistics can provide valuable context for airborne
measurements!

* Note that science applications likely benefit from analysis winds with high spatial
resolution and temporal availability (e.g., ERA5)



Acknowledgements

ACCLIP was sponsored by NSF, NASA, NOAA, and NRL

Dr. Smith acknowledges funding from NSF and NASA, as
well as support from the entire ACCLIP science team

ACCLIP science highlight paper
by Laura Pan et al. (2024):
https://doi.org/10.1073/pnas.
2318716121

Thank you!!!
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Measurement WB GV

ACCLIP Airborne State Parameters
Position, Pressure, Temperature, Winds,
Mea surements Humidity Aircraft, MMS Aircraft, VCSEL
Temperature profile (above/below aircraft) MTP
B Trace Gases
CO COMA, COLD2, ACOS Aerodyne, Picarro

CO, ACOS Picarro

CH, Picarro
N,O COMA Aerodyne
0O, UAS O3 FAST O3
NO, NO, NO-LIF NO_NOy

SO, SO2-LIF GTCIMS

HCI, HO,NO,, HNO, HCOOH, CH,COOH GTCIMS

CH,O ISAF TOGA

COS ACOS AWAS

H,O DLH, CHIWIS, ACOS VCSEL

H,O Isotopes ChiwISs
VOCs (many) WAS TOGA, AWAS
Aerosols
NMASS, CAPS, POPS,
Particle size/mass distributions UHSAS NMASS, UHSAS
Chemical composition/size PALMS ERICA
cloud particle size/imaging 2D-S 2DS
cloud droplet size FCDP CDP
Cloud/aerosol distributions above/below aircraft ROSCOE
Radiation
Radiative flux/Photolysis frequencies BBR HARP




Trajectory-derived convective influence provides
context for understanding specific flights
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For all ACCLIP sampling, higher-altitude obs generally
traveled through the UTLS anticyclone to reach the sampling
domain. UT obs were often influenced recently by eastern
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Flights on Aug 6-7, 2022 sampled horizontal,
vertical and temporal gradients
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Multi-scale (non-hydrostatic) global models may
offer better representation of transport when
convection Is an important process

Valid: 20210826-08Z
CAM-MPAS-Chem CO 14 km

30 50 70 90 110 130

ind: Grey Streamlines

Collaboration with Mary Barth, Francis Vitt, Bill Skamarock at NSF NCAR



Trajectory intersections: 100 mb calculations
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August 19, 2022: Aircraft observed different
sampling regimes from the same area
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The remote south Asian outflow was only
observable above 15km altitude!
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Analysis winds used for trajectories give qualitatively
similar, but guantitatively different solutions
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The ASM lofts short-lived chlorine to the
stratosphere, in excess of current estimates

>85% of parcels between 360K and the tropopause reached A

1-km Layer Above Tropopause (~ 16.5-17.5 km asl)
. . . . T \ T T T T
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Figure courtesy of Pan et al. (2024)



