

Study the influence of the Asian Summer Monsoon on the Upper Troposphere and Lower Stratosphere Using Methane Distributions

Dmitry A. Belikov¹, Prabir K. Patra^{2,1}, Naoko Saitoh¹

¹Center for Environmental Remote Sensing (CEReS), Chiba University, Chiba, Japan ²Research Institute for Global Change (RIGC), JAMSTEC, Yokohama, Japan

Email: d.belikov@chiba-u.jp

Introduction

- The atmospheric lifetime of CH₄ is ~9±2 years, making it a very good tracer for tracking medium-term (1-2 months) transport.
- Relatively well studied spatial and temporal patterns of CH₄ in UT/LS using:
 - Satellite Remote Sensing
 - Modeling and Data Assimilation
 - Ground-Based Remote Sensing
 - Aircraft Campaigns
 - High-Altitude Balloons
- Relatively well resolved spatial and temporal patterns of emissions: 550-594 Tg-CH₄yr⁻¹
- Tropospheric hydroxyl (OH) concentration determines CH₄ lifetime, but its variability and trends are highly uncertain.

Saunois et al. 2016; 2020, ESSD

Introduction

GOSAT thermal infrared (TIR) and shortwave infrared (SWIR) bands₄

CH₄ from GOSAT-SWIR and the ACTM transport model

- The CH₄ seasonal cycle is controlled by the surface emissions and the influence of the global monsoon circulations. The large contrast between monsoon, and pre- and post-monsoon profiles of CH₄
- A strong difference between seasons in the middle and upper troposphere is caused by convective transport.

GOSAT thermal infrared (TIR) and shortwave infrared (SWIR) bands₆

by Kei Shiomi, JAXA

GOSAT-TIR benefits

- Observations could be performed at night and during heavy cloud conditions
- Captures signal at 22 layers from the top of the atmospheric boundary layer (ABL) up to UT/LS (800-150 hPa)
- The sensitivity maximum at the levels of 200– 400 hPa

CH₄ from **GOSAT-TIR** and the **MIROC4-ACTM** transport model 7

Pathways of CH₄ Interhemispheric transport (IHT)

 CH_4 averaged over the levels of tropopause + 200 hPa, observed by GOSAT-TIR and modeled for 2010. The zonal mean value of CH_4 was subtracted. Wind vector fields are simulated by MIROC4.

Pathways of CH₄ Interhemispheric transport (IHT)

The dual role of ASMA revealed:

- Blocks IH transport in the tropical zone of the Indian Ocean (TIO) and Southeast Asia (SEA).
- Accelerate IH transport over East Africa (ETA).

Belikov et al., JGR, 2022

The CH₄ fluxes variation due to the OH difference

Set of OH fields

Control OH (OH_{CLM}): Climatological OH 3D field (1-year monthly resolution) is provided based on the TRANSCOM experiment (Patra et al., 2011)

Test OH (OH_{IAV}): Varying OH monthly concentrations based on estimations of tropospheric OH variability using methyl chloroform (CH_3CCl_3) (Patra et al., JGR, 2021).

The model simulate CH₄ concentration difference

The CH₄ fluxes difference

Transitions of CH₄ concentration difference in 2008 and 2012 11

- Large and persistent difference in OH in the period 2007-2013
- Difference in OH causes difference in CH₄ flux and CH4 concentration (±10 ppb)
- The CH₄ concentration difference propagated with altitude
- A strong redistribution of CH₄ fluxes in the 30-60N and 0-30N bands is associated with the CH₄ concentration variation in the free atmosphere under the influence of OH loss.

Belikov et al., 2024, in prep.

Summary

- 1. CH_4 is a very good tracer for tracking medium-term (1-2 months) transport.
- 2. The major factors controlling the seasonal variation of CH_4 over the South Asia region:
 - a) Change in local emission strength.
 - b) Variability in atmospheric circulation and vertical convection caused by ASMA.
- 3. The South Asia region emission and ASMA influence transport of CH₄:
 - a) In regional scale (subregional transport).
 - b) In global scale (interhemispheric transport).
- 4. The dual role of ASMA revealed:
 - a) Blocks IHT in the tropical zone of the Indian Ocean (TIO) and Southeast Asia (SEA).
 - b) Accelerate IHT transport over East Africa (ETA).
- 5. GOSAT-TIR observations provide data coverage and density suitable to study CH_4 from the top of ABL up to UT/LS.
- 6. Despite the small interannual variability (±6%), the OH fields have a significant impact on CH_4 transport in UT/LS.

Tank you very much for your attention!