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Most weather and climate research is useful but not readily

usable and needs some interface/ processing

e Complexity of Climate Extremes:

Multiscale

® Influenced by multiple physical and

biological factors that interact in
complex ways

® Physical/dynamical laws have
constraints due to inherent
assumptions

® Challenging to analyze using
traditional methods

® > Opportunity in this limitation
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Cities have a weather and climate emergency!

Increase in the extremes; city needs to prepare for eventualities
Disadvantaged communities greatly challenged in "bouncing back"
Infrastructure investments and response plans underway

Many funding agencies, foundations looking for city-based solutions
Next IPCC Special Report will be @ Cities



Cities are exposed to heat, floods, lightning, hail, freeze,
+++ impacts — This is well known

The impacts are disproportionately higher than for non-city
regions — also known/ emerging




Do cities contribute to or create these weather and
climate extremes?
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Urban Heat Islands Can Be Deadly, and They're Only Getting
Hotter

How built-up cities and higher temperatures threaten human health.

GETTY IMAGES



Heat Island Effect Diagram
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Surface temperatures vary more than atmospheric air temperatures during the day, but
they are generally similar at night. The dips and spikes in surface temperatures over the
pond area show how water maintains a nearly constant temperature day and night
because it does not absorb the sun’s energy the same way as buildings and paved
surfaces. Parks, open land, and bodies of water can create cooler areas within a city.
Temperatures are typically lower at suburban-rural borders than in downtown areas.

https://www.epa.gov/heatislands/learn-about-heat-islands



NASA’'s ECOSTRESS instrument made this image of ground temperatures near Delhi (lower right), around midnight on May 5. The urban “heat islands” of Delhi and smaller villages peak¢
102 degrees Fahrenheit (39 degrees Celsius) while nearby fields were about 40 degrees Fahrenheit cooler. Credit: NASA/JPL-Caltech
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Stewart, I.D., et al 2021. Time evolution of the surface urban heat island. Earth's
Future, 9(10), p.e2021EF002178.




‘High Temperature is a symptom of an
underlying condition”
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City Impacts Scale Beyond UHI (temperature)




Thermal effects (UHI) easier to detect.

1. Cause and effect co-located.

2. Results are consistent i.e. urbanization effect if increase in temperature
3. How to detect and represent UHI is relatively standardized (UHI or
SUHI from satellite; Tu — Tr (some reference)

Urban Convection, Rainfall effects are highly nonlinear.

1.The effect can be over the city, downwind, upwind, or
splitting around the city.

2.Impacts are nonlinear i.e can increase or decrease rains

3.Studies have used adhoc/ “erroneous” reference points in
trying to show urban effect (treating rainfall as
temperature field and ignoring dynamics)

4.No standard approach to used in showing the effect on
rainfall.
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T e e 1990s-2000 — Bob Bornstein Project Atlanta,
NYC — highlighting splitting of thunderstorms
around City




2000 Jt. Urban Experiment — OKC; Niyogi et al. OKC paper (urban — rural soil moisture gradient)
Niyogi, D., Holt, T., Zhong, S., Pyle, P.C. and Basaraq, J., 2006. Urban and land surface effects on the 30 July 2003 mesoscale convective system event
observed in the southern Great Plains. Journal of Geophysical Research: Atmospheres, 111(D19).

2005 Marshall Shepherd Earth Interactions Review paper highlighted the METROMEX from satellite
rainfall perspective (confirmed findings; widely cited)

2005 Mumbai Heavy rains — 37 inches in 24 hrs — exceptional localized heavy rain; north heavy; south
@3- 5 inches (2008 Lei et al. explicit analysis of urban representation on simulation)

@2005 Beijing studies — IUM, BUBBLEX, SURFx — Miao, Bornstein, Grimmond, ...(Zhong, Niyogi,
Gonzalez, ....), BAMS paper

2010 — Atlanta studies (Shepherd; Mote; Stallin etc) — rainfall change; convection change; increase
lightning, flood risks,..

Shepherd, Niyogi — Atlanta Tornado NASA study (https://www.wired.com /2009 /03 /urbanstorm/)

Kishtawal India climatology in follow up to a Science paper that Monsoon rainfall showing climatic
increase in extremes; reanalyzed the data and showed the increase is only over urban grids (verified

using TRMM as well as data used in Science paper)— (Kishtawal, C.M., Niyogi, D., Tewari, M., Pielke Sr, R.A. and Shepherd,
J.M., 2010. Urbanization signature in the observed heavy rainfall climatology over India. International journal of climatology, 30(13), pp.1908-1916.)

2011 = Niyogi et al. Indianapolis work- not case study but climatology of summer thunderstorms;
objective image detection technique convection detection; 2X distance; control /reference point

CIppI’OCICh -(Niyogi, D., Pyle, P., Lei, M., Aryaq, S.P., Kishtawal, C.M., Shepherd, M., Chen, F. and Wolfe, B., 201 1. Urban modification of
thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and
Climatology, 50(5), pp.1129-1144.)

@2012 NASA Interdisciplinary Science projects on urban climate — Geoff Henebry (USGS) and
NSSL/NOAA team — radar and satellite products to analyze urban effects



Parallel studies on aerosol effects on storm dynamics (UHI, roughness issues)
2007 — van den Heever and Cotton study — urban aerosols and convection
201 1- Miao, IUM studies urban aerosols and dynamics

2010 — Danny Rosenfeld, Steiner, Jiwen Fan, ... continued studies

2012 National Academies study — Urban meteorology

2018 NASA Interdisciplinary Sciences project on Urban Rainfall -
Shepherd, Niyogi et al. (ongoing); Fei Chen, Niyogi et al. (modeling
ongoing)

2022 DOE Urban Integrated Fields — Austin/ Southeast Texas, Baltimore,

Chicago, and Phoenix region — each studying UHI and urban rainfall (and
air quality /climate)

~2021-24 RDP Paris Olympics



Meta-analysis of urbanization impact on rainfall modification
Jie Liu & Dev Niyogi ; Scientific Reports, 9,
Article number: 7301 (2019) https://www.nature.com/articles/s41598-019-42494-2
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https://www.nature.com/articles/s41598-019-42494-2#auth-1
https://www.nature.com/articles/s41598-019-42494-2#auth-2
https://www.nature.com/articles/s41598-019-42494-2

Chicago/ La Porte Rainfall analysis
(Reassessment with new knowledge and technology
urban heating and urban pollution affect downwind rainfall)

NW to SE moving 2 STRONG anomaly

Difference n= 303 u=11.45m/s
89 88 87 86 85

SW Wind Weekday = Anomaly present
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W to E moving 2 weaker anomaly
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25km city size (Schmid and Niyogi); seems valid
City shape matters (circular prone to amplification; triangular prone to deflect)

Not just for weak synoptic features (even hurricane rainfield simulations affected by
urban representation /urbanization)

Not just flat terrain even under topographic influence — urban representation affects
rainfall simulations (Long Yang paper GRL; Freitag paper GRL)

Urbanization may be delaying convection in diurnal sense (climatologically)
Possible UHI threshold for whether storm will cause more rain over city or down

Aerosol effects are important but model seem to (surprisingly) capture rain effects even
when aerosols are not included

Early work on soil moisture fields in rural areas affecting urban thunderstorm being
redone (seeing good signal)



Are Urban heat and Urban rainfall selectively /
geographically occurring or is it noted globally?



Peng, et al. "Surface urban heat island
across 419 global big

cities." Environmental science &
technology 46.2 (2012): 696-703.
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Figure 2. Spatial distribution of (A) annual mean daytime SUHII (°C)
and (B) annual mean nighttime SUHII (°C) averaged over the period
2003—2008 across 419 global big cities.

Table 1. Annual, Summer, and Winter Daytime and Nighttime Surface Urban Heat Island Intensity (SUHII, °C, Mean + SD)
across Six Continents (Africa, Asia, Europe, North America, South America, Oceania) Continents and the World®

Africa Asia Europe North America South America Oceania World
N 47 209 56 37 65 5 419
annual daytime SUHII (°C) 09 +£11 12 +£ 1.0 2.0+ 09 23+ 1.6 24 £ 1.0 1.5+ 07 1.5+12
annual nighttime SUHII (°C) 09 + 0.5 1.1 +£0.5 0.8 + 0.4 09 + 0.7 1.1 + 0.5 1.0 + 04 1.1 + 0.5
summer daytime SUHII (°C) 10 + 13 15 + 13 21+ 15 2.5 + 16 3.0 + 14 23+ 12 19 + 15
summer nighttime SUHII (°C) 0.7 + 0.5 1.0 £ 0.5 1.0 + 04 1.0 £ 0.7 13 + 04 13+ 04 1.0+ 05
winter daytime SUHII (°C) 08 +12 09 £ 1.0 L7 + 04 22+ 18 17 £ 1.1 0.8 + 0.5 L1+12

winter nighttime SUHII (°C) 1.1 + 0.5 12 £ 0.7 0.4 + 0.4 0.9 + 08 09 + 07 0.8 + 0.4 1.0 + 0.7



Indian monsoon (Kishtawal et al. 201 1); US heavy rain urbanization study (Singh et al. 2019 ERL); Global Urban
Rainfall Modification study to appear in PNAS (Sui et al.); Long et al. in Nature Comm (2024 also global)

Over 1000 global cities

e 20-year precipitation data: 2001-2020
* Domain: 1 urban + 3 rural domains

* Urban precipitation anomaly (UPA) = P, — P,
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Urban Annual Precipitation Anomalies
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Extreme Cities

e 1. Do we need to represent cities in weather and climate models in order to
better simulate the extremes over cities¢ Or even more broadly beyond the
cities? i.e impact on city and impact from city on the thermal and dynamical (as
well as chemical) environment in a model?

e 2. What are the level of details and explicit versus implicit representation
needed? What feedbacks need to be ensured are appropriately represented?

e 3. Should models fields be downscaled from larger models? Or upscaled from
neighborhood-scale /agent based models?



Climate Downscaling (coarse grid (100 km x 100 km ) global information
statistically brought to local scale (10km or finer) — This is top down and most
common way of getting climate information

(a) Global surface temperature change '
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As Austin braces for another hot season, the City’s Offices of Sustainability and Resilience have published a suite of
documents designed to help the community and City departments understand and prepare for the impacts of
rising temperatures. These documents include the updated Climate Projections for the Austin area, the 2024
Summer Outlook, and the Heat Resilience Playbook.

“As we move into summer, we must acknowledge the increasing temperatures affecting our community," said Zach
Baumer, Austin’s Chief Sustainability Officer. “These documents provide essential science-based information to
help our City departments and community members understand the climate impacts affecting Austin now and in
the future — and how we can address them.”

UT-City Climate CoLab

The Climate Projections and Summer Outlook were developed through the UT-City Climate CoLab, a
collaborative effort between the City’s Offices of Sustainability and Resilience and researchers at the University of
Texas at Austin. Established in 2023, the CoLab is the first city-specific climate collaborative globally, linking City
officials and climate scientists to develop Austin-specific climate data, tools, and assessments.

“Austin has experienced a series of weather extremes in recent years, from droughts and heat waves to heavy rain
events and deep freezes,” said Dev Niyogi, Professor of Earth and Planetary Sciences at the Jackson School of
Geosciences, and part of UT’s Planet Texas 2050 grand challenge. “The City and community members are deeply
invested in understanding and preparing for future changes in our climate. The UT-City Climate CoLab represents
a significant step in linking scientific advances with practical city needs and educational opportunities to develop
effective climate solutions and resilience.”

Climate Projections for Austin

The latest Climate Projections for Austin indicate that climate change will lead to hotter summers with more
frequent heatwaves and fewer cold spells. Rainfall projections are highly uncertain, but the amount of rainfall in
our area is expected to remain relatively unchanged. As the climate shifts, we can anticipate more extreme
weather, more climate variability, and a slight increase in windy days. Temperatures above 110°F, once rare, are
expected to become more common.

PROJECTED FUTURE CLIMATE OVER AUSTIN

——an

F3

Temperaturesare
—«ued projected to steadily rise
across both high emission
and status quo emission
scenarios.

Dally Temperature

—Min

2-10°F increase

How the heat is expected

to feel in the future
Hotter Summers &
Fewer Frost Days T

@ c‘ MMS?E%OFXCENWRV o
110%+ | 32°F+

More days with temperatures above 110°F; d is projected to
Fewer nights 32°F. ily mini ST8.1°F, daily .5°F) increase by 2-10°F in the future.

More Hot Spells Fewer Frost Days and Fewer Freeze Spells

2-3X CHEUEET sk ko % Rare

sk ko g & ey

s T I by
N

Heatwave eventsare definedasthree ormore

\ PAST FROST DAYS FUTURE FROSTDAYS future
Number of frost i by 23T ill conti . Lengthof
A hotspell has consecutive days of maximum freeze spells are projected toremain the same.

temperature above 102.5°F degree threshold.

Uncertainty

BUT MORE VARIABILITY LIKELY :
#5 ssssssssss Y
woroars Ty
0006060606606 3 3
Annual precipitation, number of wet days PAST ;}.\ FUTURE
wing speeds over 45 miks per hour) and wettest consecutive 5-days projected COLD SPELLDAYS "™ COLDSPELL DAYS
toremain relatively unchanged.
The projected number of windy days shows Precipitations a large scale phenomena and
slight overall increase. projections are uncenain cwerAustin

Figure 1 Summary of climate projections over Austin, Texas based on high and status quo emissions scenarios.
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Many applications require hectometer/ hyperlocal scale
datasets

Water Availability (Water Future 2040)
Wind gusts/ loads/Impacts

PMPs

Building Energy Use, Emissions

Flood Risk Mapping and Modeling

Heat health studies

Heat Shelters/tree planting

Adaptation Strategies

Netzero Plans....

EXPERIENCE DATA

. from the climate
from the community,

. and atmospheric
and the city

sciences




City Climate — emulators, DTs, dynamic models



Recall: Most weather and climate research is useful but not
readily usable and needs some interface/ processing
This is especially true for cities
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Importance of

Real-world
Applications: From
predicting extreme
weather events to
modelling long-term
climate trends, ML
algorithms have
proven their worth in
various real-world

applications.

machine learning for climate

Increasing precision in GHG
emissions estimates
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Inference, training, development

Kaack, L.H., Donti, P.L., Strubell, E., Kamiya, G., Creutzig, F. and Rolnick, D., 2022. Aligning artificial intelligence with
climate change mitigation. Nature Climate Change, 12(6), pp.518-527.



® A suite of capabilities, including weather forecasting with results
competitive to Integrated Forecasting System (IFS)

® Data is pretrained with a combination of Observational Data,
Indirect Measurements (eg. Satellite Data) & Climate Model
Simulations (eg. CMIP6)

ClimaX

®  Many such emulators/DTs available (eg Fourcastnet, Pangu-
Weather,...)
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® Incorporates real-time and historical data of human
dynamics and urban infrastructure.

® Fusion of data derived from terrain, infrastructure
Human Centered o " ucture,
buildings, loT sensors and placed in a combined
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Atmospheric Urban Digital Twin

Many definitions

Virtual replica of a city, replicating its
physical properties, systems, and processes
digitally.
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Twins could serve as a dynamic, real-time
model of the city, allowing for simulation,
analysis, and prediction of urban
phenomena.
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Infrastructure, geographic layers well
captured

Need dynamical processes

1/

(NSF international Workshop upcoming;
also WCRP Lighthouse Activity on Digital
Earth - participate in this subactivity )

?



Defining Atmospheric Urban Digital Twins

e Speed (1000x, 10,000x,...)

e AIl/ML approaches embedded

o End-user or decision (could also be input to a model)
e Integration

o Scalability

Rao, Y., Redmon, R., Dale, K., Haupt, S.E., Hopkinson, A., Bostrom, A., Boukabara, S., Geenen, T., Hall, D.M., Smith, B.D.
and Niyogi, D., 2023. Developing Digital Twins for Earth Systems: Purpose, Requisites, and Benefits. arXiv preprint
arXiv:2306.11175.




ML for high resolution (urban) downscaling

1

1Vision algorithm advances
2 Super resolution image

3 Data Convolution (extraction)

Zeiler, M.D. and Fergus, R., 201 4. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part | 13 (pp. 818-833). Springer International Publishing.



DownScaleBench for
developing and

applying a deep
learning based
urban climate

downscaling

Singh, M., Acharyaq, N., Jamshidi, S.,
Jiao, J., Yang, Z.L., Coudert, M.,
Baumer, Z. and Niyogi, D., 2023.
DownScaleBench for developing and
applying a deep learning based urban
climate downscaling-first results for
high-resolution urban precipitation
climatology over Austin, Texas.
Computational Urban Science, 3(1),
p.22.

1. Station Data

Source: Input data ( e.g.
reanalysis or Global Historical
Climatology Network (GHCN)

or satellite product)

2. Coarse resolution input
Gridded observations
WRF model simulations
Earth Engine

Quality Control Planetary Computer

Eliminate null values based on
user requirements

DownScale
Bench

3. High Resolution Target 4. Development of

supervised learning
dataset

Unify coarse resolution, high
resolution and station
datasets in a single netcdf file

Single Image Super resolution

SRCNN, SRGAN and other
Generator models



Austin, Texas, USA multi resolution
products for 2013-01-04
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SRCNN based downscaling

Singh, M., Acharya, N., Jamshidi, S., Jiao, J., Yang, Z.L., Coudert, M., Baumer, Z. and Niyogi, D., 2023.
DownScaleBench for developing and applying a deep learning based urban climate downscaling-first results
for high-resolution urban precipitation climatology over Austin, Texas. Computational Urban Science, 3(1),

p.22.
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MeteoGAN for urban digital twins
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First results from MeteoGAN over New Delhi, rainfall case

1993-09-10
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First results from MeteoGAN over New Delhi, rainfall case

1988-08-19

CHIRPS (5 km) Bicubic (300 m) MeteoGAN (300 m)




Further improvements to MeteoGAN

LULC from Dynamic world mean over Austin, Texas for 2018-2020
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Including Physics in Models

(3) 3H Air

(1) Input Data (2) Fusion Method
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Integrating AUDTs within Physics based models or using Physics-inspired ML
approaches



WUDAPT urban

data for weather models
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Patel, P., Karmakar, S., Ghosh, S. and Niyogi, D., 2020. Improved simulation of very heavy rainfall events by incorporating WUDAPT
urban land use/land cover in WRF. Urban Climate, 32, p.100616.
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Figure 1: (a) Domain configuration of WRF (b) Land use/ land cover for control (MODIS) and including LCZ classes (WUDAPT) Black line
represents the study area.
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Rainfall (mm)
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|n-|-eg rated Al e Highlights scarcity of data for urban models

® Urban Artificial Intelligence to automatically build 3d
qutform for UrbC]n models of cities from data available from all sources.
Com pUﬁng (Incomplete but highly varied)
50% of real | L e = T * Satellite images: generate cities from low-res

i | i
data used | f | . LandScan, JAXA, Segmentation

50% error ‘ , !
injected into AT |
real data 3 : v 1% of

100% real data
used

Ground truth

Patel, P., Kalyanam, R., He, L., Aliaga, D. and Niyogi, D., 2023. Deep learning-based urban morphology for city-scale
environmental modeling. PNAS nexus, 2(3), p.pgad027.

Aliaga, D., & Niyogi, D. (2024). Digitizing cities for urban weather: representing realistic cities for weather and
climate simulations using computer graphics and artificial intelligence. Computational Urban Science, 4(1), 8.



Dublin — 3D Urban
Procedural Model

URBAN PROCEDURAL MODELING

Dublin — 3D Google Earth
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Content Design Example
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ClimateDownscaleSvite
VIIRS and DMSP continuity for night time light data
transformation

manuscript in review
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Long-term normalized difference urban index
(NDUI) data time series for urban studies

(a) Satelllte data from Google Earth
’ o ! ,i .,,,~ ° (PL”"'wj _f\ R mEi -:"'“,‘.7’__\»




UT GLOBUS: UT- GLObal Building heights for Urban Studies at 1-
meter resolution — A high-resolution urban building height digital
twin

Validation
¢ Training

.(hlcago

Inputs: ALOS 30-m, LCZ, population

Bosmn

MOd e I . U N ET Pittsburgh New York

Philadelphia

San Francisco

Target: USGS LiDAR 1-m building height Los Angelas Atinta

= Austi
San Alltoni(“ usql: ]
ouston

Ongoing development for 500 cities

across the world

Harsh Kamath, Manmeet Singh, Lori
Magruder, Zong-Liang Yang and Dev Niyogi https://arxiv.org /ftp /arxiv/papers/2205/2205.12224.pdf

in revision with Scientific Data



UT- GLOBUS: Histogram of building heights

Similar statistics
modelled by GLOBUS
relative to LIDAR

Harsh Kamath, Manmeet Singh, Lori
Magruder, Zong-Liang Yang and Dev
Niyogi
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UT-GLOBUS Dataset
An Open-Source global cities dataset for building heights

+ Uses open-source
spaceborne satellite data.

+ Employs machine learning
approaches to predict
building level information.

* Easily ingested in weather
models.

* Used to calculate thermal
comfort, model predictive
output
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UT GLObal Building Heights for
Urban Studies (UT GLOBUS)

There is a growing interest in modeling urban microclimate at finer scales to ensure a detailed
representation of cities. Currently, while models have the capacity to simulate urban
microclimate at city- and street- scales, the lack of detailed building information for model input
often acts as a bottleneck. To tackle this issue, we introduce GLObal Building heights for Urban
Studies (UT-GLOBUS), a level of detail-1 building dataset that utilizes open-source spaceborne
data and a random forest model to predict building-level information. Model simulations with
UT-GLOBUS shows that there is an improvement in the simulation of city-scale urban
temperatures. Further, UT-GLOBUS can be used to inform environmental justice decisions for heat
from street-scale modeling and to perform if-then analysis to test the efficacy of heat mitigation
strategies.

Harsh Kamath

Open source, Build height data sets for cities globally ( See
https://texuslab.org/ )



https://texuslab.org/

DT data for real world impacts - Human Heat Health Index (H3I)

Google satellite Land temperature

Air temperature

Heat vulnerability

H3I = SoVI x Z (max(UTCIL, — 32), 0} x E;

time=1i

Ref: H3I, Kamath, 2023
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How to optimize urban tress for heat mitigation?

Within 2-mile buffer

2 ﬁ'I‘rees 5 Trees

e




Austin open public spaces About 18,000 trees optimized

Available public space New tree locations
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Fire and Smoke Digital Twin

Lewis, R. H., Jiao, J., Seong, K., Farahi, A., Navrdtil, P., Casebeer, N., & Niyogi, D. (2024). Fire and smoke digital twin—A
computational framework for modeling fire incident outcomes. Computers, Environment and Urban Systems, 110, 102093.

Non Real-time Data

Census/CDC
Social Vulnerability Information

Poverty, Children, Elderly, Disability, People with Asthma

Fire Department Coverage
Austin Fire Department Coverage

Point of Interest (Public Facilities)
Fire Stations, Schools, Hospitals, etc.

Near Real-time Data -

Fire Reporting Information

Active Incident Location
Fire Type, Time, Length

Weather Forecast Information

Weather.gov
High Resolution Rapid Refresh (HRRR)

Air Quality Sensor Data

Purple Air Sensor
Microsoft Air Quality Sensors

| time, location,

Data

Aggregator

weather condition

- Validation

Weather Forecast Information
High Resolution Rapid Refresh (HRRR)

Air Quality Sensor Data

Purple Air Sensor
Microsoft Air Quality Sensors

Smoke Spread
rediction Model
2D /3D

- —

Additional Data Source

— Satellite Images

Drone Images

Elevation Model
Digital Surface Model (DSM)

Additional Community Data



Fire and Smoke Digital Twin
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Lewis, R. H., Jiao, J., Seong, K., Farahi, A., Navrdtil, P., Casebeer, N., & Niyogi, D. (2024). Fire
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Air Quality Data Fusion

Combine multiscale, ground based and satellite remote

sensing datasets over cities

Optimize

D
Calibration
Model

—

Training Phase
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/
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D |\
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Model

Operation Phase

W

Ground-level PM2.5 Map
(1x1 km?)

Machine Learning can help fuse multiple remote sensing datasets into ground-level

PM25 measurements.



Ul NEWS

CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling, TY Dai, D Niyogi, Z Nagy
Dai, T.Y., Dilsiz, A.D., Niyogi, D. and Nagy, Z., 2023, November. A Comparison of Different Deep Learning Model Architectures and Training Strategy for
Urban Energy Modeling. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and

Transportation(pp. 316-317).
UTwin: A digital twin of the UT Austin campus, BuildSys23 Calvin Lin, TYDai, AD Dilsiz, D Crawley, D Niyogi, Z Nagy

® Nov 09, 2023

Digital Twin of UT Campus Visualizes
Present, Past, Future Energy Needs
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Building Metadata
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A framework for cities to build climate smart infrastructure
(netzero, heat/health, fire, investments..)

R

Dev Niyogi® AllySasl vier C udetz"Zach Baumeraa?%k leler1 Pa{ela Pﬁﬁ ia

Jaok, YangiZoNG EISNGMAet 2 n Nagy?, Heidi-Schmalbach! ~ J a

2. The City of Austin
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Temperature,
Precipitation, Air
Quality, Satellite,
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Digital Twins, Cities and Wx/Climate Extremes

Creating Scenarios with Decision Timelines
Planning and Preparing for Various Outcomes
Localizing datasets and products

Emulators

Input data for models (parameter values, gridded initial
conditions)

Education and training



Importance of Physics-Based
Approaches

REVIEW

doi:10.1038/nature14956 — Day 3NH — Day 5NH — Day 7NH — Day 10 NH
—— Day 3 SH Day 5 SH Day 7 SH Day 10 SH
98.5
L] L] o
The quiet revolution of numerical %25
weather prediction g ™
K 80 4
Peter Bauer', Alan Thorpe' & Gilbert Brunet? -
2 70
o
Q60
i
Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady 50"
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical 404
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather M
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is 30 T T T T T § T T T y T § T § T T
performed every day at major operational centres across the world. 1981 1985 1989 1993 1997 2001 2005 2009 2013
Year

posed that the laws of physics could be used to forecast the
weather; they recognized that predicting the state of the atmo-
sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather. This proposition, even with the most optimistic interpretation

3 t the turn of the twentieth century, Abbe' and Bjerknes® pro-

of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,

any significant degree of predictability. But today, more than 100 years

later thic naradiom tranclatec intn enlvino dailv a cuctem of nanlinear

use of observational information from satellite data providing global
coverage.

More visible to society, however, are extreme events. The unusual
path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1-2 weeks lead time, and tropical sea surface
temperature variability following the El Nifio/Southern Oscillation phe-
nomenon can be predicted 3-4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-
tion needs a good representation of weather phenomena and their stat-
istics, as the underlying physical laws apply to all prediction time ranges.

Thic Ravieuwr avnlaine the fimdamantal criontific hacic af numarical

Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting

satellite data through the use of variational data'®.

Bauer, P., Thorpe, A. and Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature, 525(7567), pp.47-55.



